Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
Become a Member | Sign in
Home>News>This Article

Living, Breathing Human Lung-on-a-chip: A Potential Drug-Testing Alternative

Published: Wednesday, June 30, 2010
Last Updated: Thursday, July 15, 2010
Bookmark and Share
Researchers develop a device that acts much like a lung in a human body and is made using human lung and blood vessel cells.

Researchers from the Wyss Institute for Biologically Inspired Engineering at Harvard University, Harvard Medical School and Children’s Hospital Boston have created a device that mimics a living, breathing human lung on a microchip. The device, about the size of a rubber eraser, acts much like a lung in a human body and is made using human lung and blood vessel cells.

Because the lung device is translucent, it provides a window into the inner-workings of the human lung without having to invade a living body. It has the potential to be a valuable tool for testing the effects of environmental toxins, absorption of aerosolized therapeutics and the safety and efficacy of new drugs. Such a tool may help accelerate pharmaceutical development by reducing the reliance on current models, in which testing a single substance can cost more than $2 million.

“The ability of the lung-on-a-chip device to predict absorption of airborne nanoparticles and mimic the inflammatory response triggered by microbial pathogens, provides proof-of-principle for the concept that organs-on-chips could replace many animal studies in the future,” says Donald Ingber, senior author on the study and founding director of Harvard’s Wyss Institute.

The paper was appeared in the June 25 issue of Science.

Until now, tissue-engineered microsystems have been limited either mechanically or biologically, says Ingber, who is also the Judah Folkman professor of vascular Biology at Harvard Medical School and Children’s Hospital Boston. “We really can’t understand how biology works unless we put it in the physical context of real living cells, tissues and organs.”

With every human breath, air enters the lungs, fills microscopic air sacs called alveoli and transfers oxygen through a thin, flexible, permeable membrane of lung cells into the bloodstream. It is this membrane-a three-layered interface of lung cells, a permeable extracellular matrix and capillary blood vessel cells-that does the lung’s heavy lifting. What’s more, this lung-blood interface recognizes invaders such as inhaled bacteria or toxins and activates an immune response.

The lung-on-a-chip microdevice takes a new approach to tissue engineering by placing two layers of living tissues-the lining of the lung’s air sacs and the blood vessels that surround them-across a porous, flexible boundary. Air is delivered to the lung lining cells, a rich culture medium flows in the capillary channel to mimic blood and cyclic mechanical stretching mimics breathing.

The device was created using a novel microfabrication strategy that uses clear rubbery materials. The strategy was pioneered by another Wyss core faculty member, George Whitesides, the Woodford L. and Ann A. Flowers University Professor at Harvard University.

“We were inspired by how breathing works in the human lung through the creation of a vacuum that is created when our chest expands, which sucks air into the lung and causes the air sac walls to stretch,” says first author Dan Huh, a Wyss technology development fellow at the Institute. “Our use of a vacuum to mimic this in our microengineered system was based on design principles from nature.”

To determine how well the device replicates the natural responses of living lungs to stimuli, the researchers tested its response to inhaled living E. coli bacteria. They introduced bacteria into the air channel on the lung side of the device and at the same time flowed white blood cells through the channel on the blood vessel side. The lung cells detected the bacteria and, through the porous membrane, activated the blood vessel cells, which in turn triggered an immune response that ultimately caused the white blood cells to move to the air chamber and destroy the bacteria.

“The ability to recreate realistically both the mechanical and biological sides of the in vivo coin is an exciting innovation,” says Rustem Ismagilov, professor of chemistry at the University of Chicago, who specializes in biochemical microfluidic systems.

The team followed this experiment with a “real-world application of the device,” says Huh. They introduced a variety of nano-scaled particles (a nanometer is one-billionth of a meter) into the air sac channel. Some of these particles exist in commercial products; others are found in air and water pollution. Several types of these nanoparticles entered the lung cells and caused the cells to overproduce free radicals and to induce inflammation. Many of the particles passed through the model lung into the blood channel, and the investigators discovered that mechanical breathing greatly enhanced nanoparticle absorption. Benjamin Matthews, Harvard Medical School assistant professor in the Vascular Biology Program at Children’s Hospital Boston, verified these new findings in mice.

“Most importantly, we learned from this model that the act of breathing increases nanoparticle absorption and that it also plays an important role in inducing the toxicity of these nanoparticles,” Huh says.

“This lung-on-a-chip is neat and merges a number of technologies in an innovative way,” says Robert Langer, MIT Institute professor. “I think it should be useful in testing the safety of different substances on the lung and I can also imagine other related applications, such as in research into how the lung functions.”

According to Ismagilov, it’s too early to predict how successful this field of research will be. Still, “the potential to use human cells while recapitulating the complex mechanical features and chemical microenvironments of an organ could provide a truly revolutionary paradigm shift in drug discovery,” he says.

The investigators have not yet demonstrated the system’s capability to mimic gas exchange between the air sac and bloodstream, a key function of the lungs, but, says Huh, they are exploring this now.

The Wyss Institute team is also working to build other organ models, such as a gut-on-a-chip, as well as bone marrow and even cancer models. Further, they are exploring the potential for combining organ systems.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

The Secrets of Secretion
Researchers have hacked nature's blueprints to create a new technology that could have broad-reaching impact on drug delivery systems and self-healing and anti-fouling materials.
Tuesday, June 23, 2015
Catching And Releasing Tiny Molecules
New technique for sorting biomolecules could lead to efficient clinical diagnostics and chemical purification.
Tuesday, March 24, 2015
Airway Muscle-On-A-Chip Mimics Asthma
Tissue-level model of human airway musculature could pave way for patient-specific asthma treatments.
Wednesday, September 24, 2014
Harvard University and Oxford Nanopore Technologies Announce Licence Agreement
The agreement aims to progress nanopore science by integrating Harvard discoveries with technology in development at Oxford Nanopore.
Monday, August 11, 2008
Scientific News
Discovery Provides New Opportunities for Chips
Scientists at the University of Twente's MESA+ research institute have developed a new manufacturing method to create three-dimensional nanostructures.
Penn Engineering Team Showcases ‘Eye-on-a-Chip’ Technology
These small plastic chips contain microfluidic channels, carefully designed so that human cells can grow in them in a way that simulates the three-dimensional environments they would normally inhabit in the body.
Miniaturizable Magnetic Resonance
Microscopic gem the key to new development in magnetic lab-on-a-chip technology.
Education and Expense: The Barriers to Mass Spectrometry in Clinical Laboratories?
Here we examine the perceived barriers to mass spec in clinical laboratories and explore the possible drivers behind the recent shift in uptake of the technology in clinical settings.
Chip-Based Technology Enables Reliable Direct Detection of Ebola Virus
Hybrid device integrates a microfluidic chip for sample preparation and an optofluidic chip for optical detection of individual molecules of viral RNA.
Stem Cell Research Hints at Evolution of Human Brain
Researchers at UC San Francisco have succeeded in mapping the genetic signature of a unique group of stem cells in the human brain that seem to generate most of the neurons in our massive cerebral cortex.
Developing a Breathalyzer-Type Low Blood Sugar Warning Device For Diabetes
A multidisciplinary team of researchers at Indiana University-Purdue University Indianapolis has been awarded a $738,000 National Science Foundation grant to develop a breathalyzer-type device to detect the onset of hypoglycemia, or low blood sugar episodes, in people with diabetes.
Smartphone App to Monitor Serious Blood Disorder
A researcher from Florida Atlantic University has come up with a unique way to monitor sickle cell disease -- a serious blood disorder -- using a smart phone.
Preventing Crystallization to Improve Drug Efficiency
Esther Amstad and an international team of researchers have developed a method to increase the solubility of poorly soluble substances, such as many of the newly developed drugs.
‘Lab-on-a-Chip’ Technology Cuts Costs of Lab Tests
With ability to analyze minuscule amounts of fluid, Rutgers breakthrough could also promote central nervous system and joint research.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos