Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Detecting Cancer with the Prick of a Finger

Published: Monday, November 29, 2010
Last Updated: Monday, November 29, 2010
Bookmark and Share
BYU researchers create microdevice to speed up cancer detection.

Researchers at BYU have created a micro device that could both decrease the amount of blood and time needed to test for cancer-markers in a patient’s blood.

Chemistry professor Adam Woolley’s research, published in a recent issue of the journal, Lab on a Chip, details the device and technique that would allow for effective detection of biomarkers in a blood sample in a matter of minutes rather than days or weeks.

“You could walk into the doctor’s office, the nurse could prick your finger instead of sticking a needle in your vein, and 30 or 40 minutes later, you’d get the results back in the same doctor’s office,” Woolley said.

Woolley said the current approach for detecting biomarkers, ELISA (enzyme-linked immunosorbent assay), works well as long as you’re doing it in high volumes. This is why blood samples are usually sent to a clinical lab where they can run dozens of samples at the same time.

And while ELISA is efficient and cost effective if, say, there are 90 blood samples to process, the BYU micro device would allow a technician to look at just one sample quickly and cost-effectively to determine if there are markers for, say, breast cancer or prostate cancer.

The microchip researched and created by Woolley and doctoral student Weichun Yang could lead to effective testing for cancer-marking proteins with the use of only microliters of blood instead of milliliters – a smaller sample by a factor of a thousand.

 “Detecting cancer biomarkers in a point-of-care setting can significantly improve the throughput of cancer screening and diagnose a cancer tumor at its early stage,” said Yang, lead author on the paper. “These devices provide a robust, quick, and portable system for early stage disease diagnosis.”

Whereas ELISA uses a series of antibodies as hooks to grab targeted proteins and identify them, Woolley’s method uses only one antibody step, which is then followed by a step where voltage is applied and the proteins are identified by the speed at which they move.

The new micro device can also detect multiple cancer biomarkers in blood simultaneously. In this particular round of research, Woolley and his team used the chip to detect four biomarkers simultaneously, but the device has the potential to detect upwards of 10 or 20.

Woolley said he and his team are now looking at ways to speed up the biomarker detection process even more. Ideally, he’d like to get the 30- to 40-minute process down to 20, 15 or even 10 minutes.

“If you learn from your doctor that you might have a life-threatening disease and that some initial testing must be performed, you don’t want to wait weeks to find out what’s going on,” Woolley said. “You’d like to know that very day.”

Woolley’s research was funded by a National Institutes of Health grant awarded in 2006. Other co-authors on the study were post-doctorates Ming Yu and Xiuhua Sun.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Detecting Prostate Cancer With a Microfluidic Device
Innovative device detects prostate cancer, kidney disease on the spot.
Saturday, November 01, 2014
Measuring Molecules with the Naked Eye
Chemists’ innovation may be a better model for disease diagnostic kits.
Thursday, November 01, 2012
Scientific News
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Blood-brain Barrier on a Chip
Researchers from Vanderbilt University have developed a microfluidic device to study the blood-brain barrier.
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
Peer Review is in Crisis, But Should be Fixed, Not Abolished
After the time to get the science done, peer review has become the slowest step in the process of sharing studies, and some scientists have had enough.
Making Every Cell Matter
New method for encapsulating single cells within microgels could boost efficacy of cell-based therapies and tissue engineering.
Modelling Cigarette Effects with Airway-on-a-Chip
An instrument that smokes cigarettes like a human, and delivers whole smoke to the air space of microfluidic human airway chips, enables new insights into how non-smokers and COPD patients respond to smoke.
Robotic Cleaning Technique Could Automate Neuroscience Research
New robotic cleaning technique allows pipettes used in patch-clamping to be re-used up to 11 or more times.
Lab-on-a-Chip to Help Detect Cancer
In this podcast, we speak to Gustavo Stolovitsky to learn about his career and the work he is doing at IBM Research.
First Entirely 3D-printed Organ-on-a-Chip with Integrated Sensors
New approach to manufacturing may allow researchers to rapidly design organs-on-chips that match the properties of a specific disease or individual patient's cells.
3D-Printing in Science: Conference Co-Staged with LABVOLUTION
LABVOLUTION 2017 will have an added highlight of a simultaneous conference, "3D-Printing in Science".
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!