Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

COMSOL Introduces the Microfluidics Module

Published: Friday, May 27, 2011
Last Updated: Friday, May 27, 2011
Bookmark and Share
The new Microfluidics Module from COMSOL provides an integrated environment for modeling microfluidic and rarefied flows.

COMSOL, Inc., has announced the release of the Microfluidics Module. Based on COMSOL Multiphysics, the Microfluidics Module brings easy-to-use tools for the study of microfluidic devices and rarefied gas flows. The module is designed for researchers, engineers, and experimentalists in the fields of microfluidics and vacuum science.

Target application areas include lab-on-chip devices, digital microfluidics, biosensors, electrokinetic and magnetokinetic devices, inkjet technology, and vacuum system design. The module is accompanied by a suite of tutorial and industrially relevant models that serve as both instructional examples and as a foundation for future work.

“The simulation of microfluidic devices frequently requires multiple physical effects to be incorporated,” comments Dr. James Ransley, developer of the Microfluidics Module with COMSOL, Inc. “The Microfluidics Module offers a range of tools to deal with single- and multi-phase flows, transport and chemical reactions, flow in porous media, and rarefied flows. Thanks to the single user-interface in COMSOL for modeling all physics, these phenomena can be seamlessly coupled with thermal and electromagnetic effects.”

Specialized Microfluidics Interfaces

The Microfluidics Module includes interfaces for single-phase flow. With these interfaces users can simulate such applications as compressible gas flows at low pressures, non-Newtonian flows (for example blood flow), and laminar and creeping flows that typically occur in lab-on-a-chip systems.

A particular strength in this module is its modeling interfaces for executing two-phase flow simulations using the level set, phase field, and moving mesh methods. A variety of important fluid-interface effects are included such as surface tension forces, capillary forces, and Marangoni effects.

These flow simulation tools and the multiphysics capabilities of COMSOL make it easy to set up coupled electrokinetic and magnetohydrodynamic models for the simulation of electrophoresis, magnetophoresis, dielectrophoresis, electroosmosis, and electrowetting effects that are used alone or in combinations in both existing and emerging passive electronic display technologies for their basic function.

“We strongly believe that the Microfluidics Module will offer a very attractive set of tools for our electronic display customers,” comments Dr. Ransley. Chemical diffusion for multiple dilute species is also included in the module, enabling the simulation of processes occurring in lab-on-chip devices and biosensors.

Molecular Flow

The Microfluidics Module comes with a new free molecular flow interface that uses the fast angular coefficient method and allows for simulations where the molecular mean free path is much longer than the geometric dimensions. Combined with COMSOL’s LiveLink interfaces for industry-standard CAD packages, this tool is invaluable for vacuum system design because it enables users to run quick parametric studies of chamber geometries and pump configurations.

Tutorials

The Microfluidics Module is supplied with a set of fully documented industrially relevant and tutorial models:
• Capillary Rise
• Jet Instability
• Drug Delivery System
• Electrokinetic Valve
• Electroosmotic Mixer
• Electrowetting Lens
• Lamella Mixer
• Star Chip
• Viscous Catenary
• Vacuum Capillary
• Ion Implanter

“The Microfludics Module combines proven and robust multiphysics solvers with the easy-to-use user interface of COMSOL together with a range of solutions targeted at microfluidics applications,” concludes Dr. Ransley. “The net result is a product with unprecedented ease of use which can handle arbitrarily complicated industrial and academic problems.”

Microfluidics Module Highlights

• Model single-phase, multiphase, and porous media flows with dedicated physics interfaces.
• Multiphase flows can be simulated with Level Set, Phase field, and Moving Mesh physics interfaces.
• Incorporation of essential microfluidic effects such as electrophoresis, magnetophoresis, dielectrophoresis, electroosmosis, and electrowetting.
• Model chemical diffusion with multiple dilute species. Diffusion and reactions in one phase of a two-phase flow with the two-phase flow moving mesh interface.
• Solve stationary, highly rarefied flows, such as flows in high vacuum systems, using the free molecular flow interface.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

SB Microsystems Becomes COMSOL Certified Consultant
Consultancy, specializing in the design, simulation, prototyping, and testing of micro-fluidic devices and micro electro-mechanical system fabrication, certified as COMSOL Multiphysics experts.
Wednesday, May 04, 2011
Scientific News
Paving the way to Better Ovarian Cancer Diagnosis
Aïcha BenTaieb will present her invention for automated identification of ovarian cancer’s many subtypes at an international conference this fall.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Futuristic Brain Probe Allows for Wireless Control of Neurons
NIH-funded scientists developed an ultra-thin, minimally invasive device for controlling brain cells with drugs and light.
Microfluidic Device Mixes And Matches DNA For Synthetic Biology
Researchers have developed a microfluidic device that quickly builds packages of DNA and delivers them into bacteria or yeast for further testing.
Artificial Pancreas Controls Diabetes
Scientists are reporting the development of an implantable “artificial pancreas” that continuously measures a person’s blood sugar, or glucose, level and can automatically release insulin as needed.
Major Step for Implantable Drug-Delivery Device
MIT spinout signs deal to commercialize microchips that release therapeutics inside the body.
Smart Insulin Patch Could Replace Painful Injections for Diabetes
A joint effort between diabetes doctors and biomedical engineers could revolutionize how people with diabetes keep their blood sugar levels in check.
The Secrets of Secretion
Researchers have hacked nature's blueprints to create a new technology that could have broad-reaching impact on drug delivery systems and self-healing and anti-fouling materials.
New Tool on Horizon for Surgeons Treating Cancer Patients
Surgeons could know while their patients are still on the operating table if a tissue is cancerous, according to researchers.
Heartbeat on a Chip Could Improve Pharmaceutical Tests
A gravity-powered chip that can mimic a human heartbeat outside the body could advance pharmaceutical testing and open new possibilities in cell culture because it can mimic fundamental physical rhythms.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!