Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

VTT Speeds up Drug Development with More Advanced Microarray Technology

Published: Friday, May 27, 2011
Last Updated: Friday, May 27, 2011
Bookmark and Share
VTT has developed a method which allows a single microchip to be used to screen the functions of tens of thousands of genes simultaneously by means of RNA interference.

RNA interference technology, which is used in cell biology, has revolutionized functional research of the gene products in the last ten years.

VTT Technical Research Centre of Finland has developed a method which allows a single microchip to be used to screen the functions of tens of thousands of genes simultaneously by means of RNA interference.

Traditional methods only allow a few hundred genes to be screened with each microplate, and therefore the new method will accelerate VTT’s service offering in the field of drug development.

“VTT has already tested the method on a panel of almost one hundred cancer cell types and found it to be both efficient and reliable. We have used the method especially in breast cancer and prostate cancer studies,” explains Juha Rantala, a research scientist at VTT and the founder of the method.

The primary benefit of the method is that it allows such a large number of samples to be analyzed simultaneously, which saves both money and human resources, and speeds up research considerably. The findings of the study were published in March 2011 in BMC Genomics, a journal specializing in the methodologies of genetic research.

Miniaturized cell spot microarray techniques, which are used to analyze the functioning of cells, have featured in drug development at VTT for a few years now, and they are both an important research tool and a development priority.

Ultra-high throughput screening (UHTS) techniques are used at VTT to study how one gene or groups of genes regulate the cell activities, and how the cell functions promote health, or cause illnesses.

RNA interference technology allows genes to be “silenced” and thereby inhibit protein production of genes. Potential future use of RNAi technology includes also the diagnosis and treatment of illnesses.

The unique method developed by VTT is mostly used in genomic-scale analyses which have previously been very expensive. The new technology is believed to give VTT a competitive advantage in genome research which is of special interest of the drug industry.

Other potential applications include studying the combined effects of genes and drugs. Research scientists at VTT have also cited the method previously in a scientific publication focusing on the cell division of breast cancer cells. The method is believed to significantly boost VTT’s commercial activities with the drug industry.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Diagnostic Thread - Weaving the Future?
Researchers have created diagnostic threads that could pave the way for next-gen implantable and wearable diagnostics.
R&D Agreement for Development of CtDNA Diagnostics
SeraCare and NIST partner for development of ctDNA diagnostic assay reference materials.
Adipose Analysis on Microfluidic Chips
Scientists have developed a microfluidic chip the works with minute liquid quantities to grow and study cells.
New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
DNA Production Facility Begins Operation
Scientists mark the opening of the UK's first fully automated DNA construction and modification facility.
A “Micro Winery” That Makes Wine Continuously
An American professor, working in collaboration with EPFL, is developing a miniature device for producing wine non-stop and testing different fermentation processes.
Testing for Malaria or Cancer at Home
Chemist develops tech to save lives in rural Africa.
Tough New Hydrogel Hybrid Doesn’t Dry Out
Water-based material could be used to make artificial skin, longer-lasting contact lenses.
Lasers Carve the Path to Tissue Engineering
A new technique, developed at EPFL, combines microfluidics and lasers to guide cells in 3D space, overcoming major limitations to tissue engineering.
A Future Tool for Medicine, Food Safety
A new type of electronic sensor that might be used to quickly detect and classify bacteria for medical diagnostics and food safety has passed a key hurdle by distinguishing between dead and living bacteria cells.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!