Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Columbia University Researchers Interrogate Primary Cells using the IonFlux System

Published: Friday, June 10, 2011
Last Updated: Friday, June 10, 2011
Bookmark and Share
Automated patch clamp platform enables recording of primary human smooth muscle cells.

Fluxion Biosciences, Inc. has announced that the laboratory of Charles Emala, M.D. at Columbia University has demonstrated, for the first time, the effective use of ensemble recording to measure ion channel currents from human primary cells.

The use of primary cells in conjunction with automated electrophysiology is essential to achieving higher physiological relevance for ion channel assays.

“This is an essential step forward for the validation of IonFlux technology”. “The IonFlux platform has enabled us to obtain an impressive amount of high quality data in a short period of time,” said Dr. Charles Emala, M.D., Professor of Anesthesiology and Vice Chair for Research at Columbia University Medical Center.

Emala continued, “Our laboratory is focused on understanding the physiology of airway smooth muscle cells as a key component for a number of diseases including asthma and allergic response. Since the GABAerginc system is an important factor in asthma and other disease states, direct ion channel current measurements are an important technique for our laboratory; progress using manual patch clamp recording is slow due to variable success rates, high labor content, and a long learning curve. Once we validated assays to look at endogenously expressed ion channel currents in both immortalized and native primary cells, the IonFlux 16 system provided a solution for obtaining data at a high experimental throughput. It is simple to operate. While other automated electrophysiology systems are available, they are priced well beyond the budget of an individual research lab.”

The flexibility, ease of use, and scalability of the IonFlux 16 system facilitates a wide range of patch clamp experiments, including the characterization of changes in ion channel activity. The system fully automates the patch clamp process and compound perfusion, eliminating the technical skill and time associated with the manual patch clamp technique.

“This is an essential step forward for the validation of IonFlux technology,” said Steven Smith, Ph.D., Technical Director at Fluxion Biosciences.

Smith continued, “Throughout life science and drug discovery research, there is a concerted move toward more physiologically relevant assays: recombinant cell based experiments are being replaced with experiments based on stem cell derived or, ideally, primary cell systems. For automated electrophysiology systems, primary cell recording was previously thought to be very difficult, if not impossible. The results emerging from the Emala lab have turned that perception on its head by demonstrating robust recordings and high success rates can be obtained on the IonFlux system from both primary cells of human origin and immortalized primary cells in culture that endogenously express native levels of ion channel proteins.”

The IonFlux 16 system utilizes Fluxion’s innovative Well Plate Microfluidic™ technology to automate the patch clamp process. The system includes 16 amplifiers and performs 16 voltage-clamp recordings in parallel. It provides fast perfusion of up to 8 compounds per cell ensemble for a total of 128 data points per 96-well plate.

The IonFlux HT system is also available for higher throughput studies and features 64 amplifiers. The use of ensemble recording improves consistency and success rates, enabling the systematic study of ion channel kinetics and compound pharmacology.

These studies were previously impractical for a wide range of investigators due to the large amount of specialized training required and relatively low throughput of the manual patch clamp technique; comparable automated patch clamp instruments have a prohibitive cost for the individual research lab.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Research Team from Fred Hutchinson Cancer Center Wins 2010 BioFlux Innovation Award
Group will use BioFlux System for advanced screening applications applicable to women’s reproductive health.
Saturday, September 18, 2010
Ohio State University Researchers Adopt IonFlux 16 Automated Patch Clamp System
First of kind high throughput instrument for research applications enables ion channel studies.
Monday, August 16, 2010
Scientific News
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Lab-on-a-Chip for Detecting Glucose
By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Soy Shows Promise as Natural Anti-Microbial Agent
Researchers from University of Guelph show that soy isoflavones and peptides could be used to reduce microbial contamination of food.
Parsortix Demonstrates Benefits Over Marker-Based Systems
Research published online in the International Journal of Cancer, shows the ParsortixTM System efficiently captures and harvests intact, viable circulating tumour cells (CTCs), including EpCAM-negative CTCs, to allow for broader downstream CTC analysis.
Experimental Therapy For Brain Cancer Could Prevent Drug Resistance
Information from penny-sized microfluidic chips allowed researchers to anticipate resistance to cancer treatment.
3D Printing of Lego Fluidics
Study shows how 3D printing can open up microfluidic technology to a wider audience.
New Method to Preserve Device to Monitor HIV Treatment
Inspired by pregnancy tests, scientists have developed a method to store microfluidic devices for months without refrigeration, giving developing countries an inexpensive and reliable way to treat patients.
Migration Creates Cancer Cell Vulnerabilities
Scientists found that migration can damage cancer cells’ nuclei and DNA, requiring repairs for their survival. The results may open new avenues for targeting metastatic cancer.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!