Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

mPhase Explains Key Technology Features of Smart Surface Technology

Published: Tuesday, November 22, 2011
Last Updated: Tuesday, November 22, 2011
Bookmark and Share
The company has developed a technology that exploits the phenomenon of electrowetting - the ability to electronically manipulate the way liquids behave when in contact with a solid or porous surface.

This is based on the observation that liquids such as water will bead up on a surface that is superhydrophobic, but can be made to move or spread out by electrowetting. The same is true for an organic liquid if the surface is superlyophobic.

mPhase is pursuing this emerging technology, which is now being actively researched at a number of universities who are publicizing their work on electrowetting, superhydrophobicity and superlyophobicity.

The technology is being used to create so-called "smart" structures on metal, ceramic, polymer surfaces and other advanced materials that can resist getting dirty, fogging up, or forming ice. They also can be used for displays, lenses and other applications.

To date mPhase has been concentrating on smart battery applications by exploiting this same electrowetting phenomenon in their Smart NanoBattery by manipulating the liquid electrolyte via a proprietary porous silicon structure shown in Figure 1.

The breakthrough has enabled a unique reserve-style battery architecture that has proven adaptable to a wide range of chemistries, with the initial development based on zinc manganese dioxide (Zn/MnO2) chemistries, similar to the typical alkaline battery used in a flashlight or TV remote control, as well as development focused on higher-energy density, lithium manganese dioxide (Li/MnO2), chemistries found in laptops, cell phones and digital cameras. Future applications that can be implemented within the same architecture include rechargeable batteries based on lithium-based chemistries.

These correlate to first launching and proving out the technology for a reserve battery, then a primary cell with the Zn/MnO2 or Li/MnO2 chemistries, and later a secondary (rechargeable) battery.
At that point, if completed the family of mPhase Batteries will be (reserve, primary and secondary) potentially serving a wide range of applications.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Diagnostic Thread - Weaving the Future?
Researchers have created diagnostic threads that could pave the way for next-gen implantable and wearable diagnostics.
R&D Agreement for Development of CtDNA Diagnostics
SeraCare and NIST partner for development of ctDNA diagnostic assay reference materials.
Adipose Analysis on Microfluidic Chips
Scientists have developed a microfluidic chip the works with minute liquid quantities to grow and study cells.
New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
DNA Production Facility Begins Operation
Scientists mark the opening of the UK's first fully automated DNA construction and modification facility.
A “Micro Winery” That Makes Wine Continuously
An American professor, working in collaboration with EPFL, is developing a miniature device for producing wine non-stop and testing different fermentation processes.
Testing for Malaria or Cancer at Home
Chemist develops tech to save lives in rural Africa.
Tough New Hydrogel Hybrid Doesn’t Dry Out
Water-based material could be used to make artificial skin, longer-lasting contact lenses.
Lasers Carve the Path to Tissue Engineering
A new technique, developed at EPFL, combines microfluidics and lasers to guide cells in 3D space, overcoming major limitations to tissue engineering.
A Future Tool for Medicine, Food Safety
A new type of electronic sensor that might be used to quickly detect and classify bacteria for medical diagnostics and food safety has passed a key hurdle by distinguishing between dead and living bacteria cells.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!