Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Microfluidics Evolution

Published: Wednesday, December 07, 2011
Last Updated: Wednesday, December 07, 2011
Bookmark and Share
Lab-on-a-chip devices are creating performance advantages across a wide range of applications and basic research.

When Caliper Technologies developed its microfluidic-based lab-on-a-chip (LOC) Bioanalyzer in the late-1990s, there was futuristic talk about how this device could be put into the home and people could use it to analyze a small blood sample every morning to see what foods/supplements they could take that day to optimize their physical well-being. Of course that application never made it to the marketplace, but Agilent Technologies, Santa Clara, Calif., bought the technology and continues to market its 2100 Bioanalyzer for sizing, quantification and quality control of DNA, RNA, proteins and cells. Results from the 2100 are delivered in less than 30 min in automated, high-quality digital formats.

The overall market for the entire biochip industry (which includes microarrays) is strong, with BCC Market Research estimating its total market in 2008 as $2.4 billion, which increased to $2.6 billion in 2009. BCC expects the market to grow at a compound annual growth rate (CAGR) of 17.7%, reaching $5.9 billion in 2014. For microfluidic LOCs specifically (a subset of the biochip market), the market for 2008 was $755 million, which then increased to $817 million in 2009. The LOC market is expected to have a five-year CAGR of 20.9%, reaching $2.1 billion in 2014. This forecast is in line with estimates by Yole Development, a European microsystem market research firm.

LOC devices have matured a lot since those first Caliper instruments introduced the basic technology to the marketplace. Agilent markets the 2100 as "one platform—endless possibilities." LOC devices bring the benefits of miniaturized, integrated and automated testing and analysis to numerous research-based industries, including genomics, biologicals (vaccines, blood, allergenics, gene therapy, tissues and various proteins isolated from humans, animals or microorganisms), histochemistry, fluorescence microscopy, drug discovery and preclinical development, environmental and forensics.

There are four basic steps in the 2100 Bioanalyzer’s operation: 1) the sample moves through the microchannels from the sample well (see picture below), 2) the sample is injected into the separation channel, 3) sample components are electrophoretically separated and 4) components are detected by their fluorescence and translated into gel-like images (bands) and electropherograms (peaks).
Because of their numerous applications, LOCs have attracted a multitude of suppliers and manufacturers offering all kinds of capabilities. From the full-scale LOC devices that can be integrated into standalone instruments like those from Agilent Technologies (shown below) to individual breadboard-type components to customized service houses, there are numerous suppliers to choose from. Then, there’s always the do-it-yourself researchers like the innovative students at the Stanford Microfluidics Laboratory (SML) at Stanford Univ., Palo Alto, Calif.

One of several research projects at SML involves the development of novel assays and portable instrumentation for label-free toxin detection. While GCMS and LCMS instruments are normally used for environmental monitoring, their size, sample prep and power requirements mostly limit their use to laboratory settings. To create a portable device to test for toxins in the field, Stanford’s Moran Bercovici and associates, in collaboration with the Univ. of Alberta’s Christopher Backhouse, developed an inexpensive handheld device (240 g) that utilizes microchip-based electrophoresis and isotachophoresis (ITP) with laser-induced fluorescence (LIF) detection. The resulting self-contained device integrates the functionality required for high voltage generation onto a microelectronic chip, includes LIF detection and is powered by a USB link connected to a laptop computer. The device has a limit of detection of 100 pM. "We also integrated several ITP assays in the device for label-free detection of a wide variety of chemicals, including chemical warfare agents, explosives and endocrine disruptors, with no requirement for sample processing," says Bercovici.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Blood-brain Barrier on a Chip
Researchers from Vanderbilt University have developed a microfluidic device to study the blood-brain barrier.
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
Peer Review is in Crisis, But Should be Fixed, Not Abolished
After the time to get the science done, peer review has become the slowest step in the process of sharing studies, and some scientists have had enough.
Making Every Cell Matter
New method for encapsulating single cells within microgels could boost efficacy of cell-based therapies and tissue engineering.
Modelling Cigarette Effects with Airway-on-a-Chip
An instrument that smokes cigarettes like a human, and delivers whole smoke to the air space of microfluidic human airway chips, enables new insights into how non-smokers and COPD patients respond to smoke.
Robotic Cleaning Technique Could Automate Neuroscience Research
New robotic cleaning technique allows pipettes used in patch-clamping to be re-used up to 11 or more times.
Lab-on-a-Chip to Help Detect Cancer
In this podcast, we speak to Gustavo Stolovitsky to learn about his career and the work he is doing at IBM Research.
First Entirely 3D-printed Organ-on-a-Chip with Integrated Sensors
New approach to manufacturing may allow researchers to rapidly design organs-on-chips that match the properties of a specific disease or individual patient's cells.
3D-Printing in Science: Conference Co-Staged with LABVOLUTION
LABVOLUTION 2017 will have an added highlight of a simultaneous conference, "3D-Printing in Science".
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!