Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Nanoink Announces Launch of Contract Services Program for Live Single Cell Assay Work

Published: Monday, February 13, 2012
Last Updated: Monday, February 13, 2012
Bookmark and Share
Service offering expected to advance research programs involved with toxicity assessment, high content screening, and cell-cell communication.

NanoInk’s® NanoFabrication Systems Division announced that it introduced a new contract services program dedicated to the development of live single cell array assays. This offering supplements NanoInk’s portfolio of Dip Pen Nanolithography® (DPN®)-based systems and tools used for micro and nanopatterning applications to include a service component. Life scientists now have even more ways to access the advantages of DPN for their research.

At the heart of the NanoFabrication Systems’ contract services program is its DPN nanofabrication instruments capable of constructing complex multiplexed patterns of biocompatible materials at subcellular scales. This capability can be utilized to construct defined microenvironments for attaching live single cells and subsequently investigating cellular responses. Single cells (up to 5,000 individual cells on a single NanoInk chip) can be exposed to different external stimuli (including biological, chemical and topographical stimuli) and the downstream effects of these stimuli can be monitored at the cellular, proteomic or genomic levels. Additionally, studies on limited or rare cells harvested from a patient can potentially be exposed to many conditions, making theranostic applications possible. This new contract services program will enable researchers to engage NanoInk to design, develop and construct custom single cell assays.

“We believe that NanoInk’s single cell assay technology has the potential to revolutionize in vitro cell biology research, including applications in drug toxicity testing and drug screening. Micropatterned single cells can also be harnessed to probe underlying mechanisms of cell behavior like cell-cell interactions, cell-surface interactions, cell migration, and cell invasion,” explained Tom Warwick, general manager of the NanoFabrication Systems Division.

NanoInk has already demonstrated the ability of its nanofabrication platform to place single cells at defined locations on a substrate and to then expose individual cells to small molecules and nanoparticles. Saju Nettikadan, Ph.D., director of applications development at NanoInk, said, “NanoInk findings also show that two different cell types can be placed at defined locations on a single chip to form single cell co-cultures. We have demonstrated the single cell co-culture proof-of-concept using 3T3 fibroblasts and C2C12 myoblasts. As part of our live single cell assay contract research program, we welcome requests to design and develop custom assays.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Device May Detect Urinary Tract Infections Faster
A Lab-on-a-Disc platform developed by a German and Irish team of researchers dramatically cut the time to detect bacterial species that cause urinary tract infections -- a major cause of sepsis.
Automation Abound at AACC in Atlanta
Discover the latest breakthroughs, trends and products from the AACC Annual Meeting & Clinical Lab Expo.
Real-Time Data for Cancer Therapy
Biochemical sensor implanted at initial biopsy could allow doctors to better monitor and adjust cancer treatments.
Lab-on-a-Chip Offers Promise for TB and Asthma Patients
A device to mix liquids using ultrasonics is the first and most difficult component in a miniaturized system for low-cost analysis of sputum from patients with pulmonary diseases such as tuberculosis and asthma.
Paving the way to Better Ovarian Cancer Diagnosis
Aïcha BenTaieb will present her invention for automated identification of ovarian cancer’s many subtypes at an international conference this fall.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Futuristic Brain Probe Allows for Wireless Control of Neurons
NIH-funded scientists developed an ultra-thin, minimally invasive device for controlling brain cells with drugs and light.
Microfluidic Device Mixes And Matches DNA For Synthetic Biology
Researchers have developed a microfluidic device that quickly builds packages of DNA and delivers them into bacteria or yeast for further testing.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!