Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

MIT Researchers Develop a New Approach to Producing 3D Microchips

Published: Friday, March 02, 2012
Last Updated: Friday, March 02, 2012
Bookmark and Share
Microelectromechanical systems, or MEMS, are small devices with huge potential. Typically made of components less than 100 microns in size they have been used as tiny biological sensors, accelerometers, gyroscopes and actuators.

For the most part, existing MEMS devices are two-dimensional, with functional elements engineered on the surface of a chip. It was thought that operating in three dimensions — to detect acceleration, for example — would require complex manufacturing and costly merging of multiple devices in precise orientations.

Now researchers at MIT have come up with a new approach to MEMS design that enables engineers to design 3-D configurations, using existing fabrication processes; with this approach, the researchers built a MEMS device that enables 3-D sensing on a single chip. The silicon device, not much larger than Abraham Lincoln’s ear on a U.S. penny, contains microscopic elements about the width of a red blood cell that can be engineered to reach heights of hundreds of microns above the chip’s surface.

Fabio Fachin, a postdoc in the Department of Aeronautics and Astronautics, says the device may be outfitted with sensors, placed atop and underneath the chip’s minuscule bridges, to detect three-dimensional phenomena such as acceleration. Such a compact accelerometer may be useful in several applications, including autonomous space navigation, where extremely accurate resolution of three-dimensional acceleration fields is key.

“One of the main driving factors in the current MEMS industry is to try to make fully three-dimensional devices on a single chip, which would not only enable real 3-D sensing and actuation, but also yield significant cost benefits,” Fachin says. “A MEMS accelerometer could give you very accurate acceleration [measurements] with a very small footprint, which in space is critical.”

Fachin collaborated with Brian Wardle, an associate professor of aeronautics and astronautics at MIT, and Stefan Nikles, a design engineer at MEMSIC, an Andover, Mass., company that develops wireless-sensor technology. The team outlined the principles behind their 3-D approach in a paper accepted for publication in the Journal of Microelectromechanical Systems.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Freshly Squeezed Vaccines
Microfluidic cell-squeezing device opens new possibilities for cell-based vaccines.
Saturday, May 23, 2015
Faster, Smaller, More Informative
Device can measure the distribution of tiny particles as they flow through a microfluidic channel.
Thursday, May 14, 2015
Using Sound Waves To Detect Rare Cancer Cells
Acoustic device can rapidly isolate circulating tumor cells from patient blood samples.
Tuesday, April 07, 2015
Mechanically Stimulating Stem Cells
MIT biological engineering graduate student Frances Liu is studying ways to alter mechanical properties of cell environments to produce desired chemical outputs.
Tuesday, March 24, 2015
New Way To Model Sickle Cell Behavior
Microfluidic device allows researchers to predict behavior of patients’ blood cells.
Wednesday, January 21, 2015
Watching How Cells Interact
New device allows scientists to glimpse communication between immune cells.
Thursday, January 15, 2015
Researchers Find that Going with the Flow Makes Bacteria Stick
In surprising new discovery, scientists show that microbes are more likely to adhere to tube walls when water is moving.
Tuesday, February 25, 2014
A Microchip for Metastasis
MIT researchers design a microfluidic platform to see how cancer cells invade specific organs.
Thursday, February 06, 2014
Self-Steering Particles Go with the Flow
Asymmetrical particles could make lab-on-a-chip diagnostic devices more efficient and portable.
Monday, November 18, 2013
Microfluidic Platform Gives a Clear Look at a Crucial Step in Cancer Metastasis
A microfluidic platform provides a high-resolution view of a crucial step in cancer metastasis.
Friday, September 27, 2013
Watching Tumors Burst Through a Blood Vessel
A microfluidic platform provides a high-resolution view of a crucial step in cancer metastasis.
Tuesday, September 24, 2013
Detecting DNA in space
Researchers, in a step toward analyzing Mars for signs of life, find that gene-sequencing chip can survive space radiation.
Tuesday, July 09, 2013
Device Finds Stray Cancer Cells in Patients’ Blood
A microfluidic device that captures circulating tumor cells could give doctors a noninvasive way to diagnose and track cancers.
Wednesday, April 10, 2013
Watching Fluid Flow at Nanometer Scales
Researchers find that tiny nanowires can lift liquids as effectively as tubes.
Tuesday, April 02, 2013
Putting the Squeeze on Cells
By deforming cells, researchers can deliver RNA, proteins and nanoparticles for many applications.
Wednesday, January 23, 2013
Scientific News
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Futuristic Brain Probe Allows for Wireless Control of Neurons
NIH-funded scientists developed an ultra-thin, minimally invasive device for controlling brain cells with drugs and light.
Microfluidic Device Mixes And Matches DNA For Synthetic Biology
Researchers have developed a microfluidic device that quickly builds packages of DNA and delivers them into bacteria or yeast for further testing.
Artificial Pancreas Controls Diabetes
Scientists are reporting the development of an implantable “artificial pancreas” that continuously measures a person’s blood sugar, or glucose, level and can automatically release insulin as needed.
Major Step for Implantable Drug-Delivery Device
MIT spinout signs deal to commercialize microchips that release therapeutics inside the body.
Smart Insulin Patch Could Replace Painful Injections for Diabetes
A joint effort between diabetes doctors and biomedical engineers could revolutionize how people with diabetes keep their blood sugar levels in check.
The Secrets of Secretion
Researchers have hacked nature's blueprints to create a new technology that could have broad-reaching impact on drug delivery systems and self-healing and anti-fouling materials.
New Tool on Horizon for Surgeons Treating Cancer Patients
Surgeons could know while their patients are still on the operating table if a tissue is cancerous, according to researchers.
Heartbeat on a Chip Could Improve Pharmaceutical Tests
A gravity-powered chip that can mimic a human heartbeat outside the body could advance pharmaceutical testing and open new possibilities in cell culture because it can mimic fundamental physical rhythms.
Unravelling the Mysteries of Carbonic Acid
Researchers have shown how gaseous carbon dioxide molecules are solvated by water to initiate the proton transfer chemistry that produces carbonic acid and bicarbonate.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!