Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Any And All Toxic Materials Identified By "Dip Chip" Technology On-The-Go

Published: Monday, May 21, 2012
Last Updated: Monday, May 21, 2012
Bookmark and Share
Scientists at the Hebrew University of Jerusalem have married biology and engineering to produce a biosensor device which detects toxicity quickly and accurately.

From man-made toxic chemicals such as industrial by-products to poisons that occur naturally, a water or food supply can be easily contaminated. And for every level of toxic material ingested, there is some level of bodily response, ranging from minor illness to painful certain death.

Biosensors have long been used to safeguard against exposure to toxic chemicals. Food tasters employed by the ancients acted as early versions of biosensors, determining if a meal had been poisoned. More modern examples include the use of fish, which may alter their swimming characteristics if a toxic material is introduced into to the water. But although current warning systems are more sophisticated, they require equipment and time that a soldier in the field or an adventurer in the wilderness do not have.

Now Prof. Yosi Shacham-Diamand, Vice Dean of Tel Aviv University's Faculty of Engineering, along with Prof. Shimshon Belkin of the Institute of Life Sciences at the Hebrew University of Jerusalem, has married biology and engineering to produce a biosensor device called the "Dip Chip," which detects toxicity quickly and accurately, generating low false positive and false negative readings. The Dip Chip contains microbes designed to exhibit a biological reaction to toxic chemicals, emulating the biological responses of humans or animals.

Converting biological response to electricity

The biological reaction is converted into an electronic signal that can be read by the user. When perfected for commercial applications, the chip might be easily plugged into a mobile device to determine toxicity, says Prof. Shacham-Diamand.

The new chips are based on genetically modified microbes developed in Prof. Belkin's lab. When the modified microbes are exposed to toxic or poisonous materials, they produce a measurable biochemical reaction - and this is where Prof. Shacham-Diamand's work begins.

"In my lab, we developed a method for communicating with the microbes, converting this biological response to electrical signals," he explains. The device, which looks like a dip stick, immobilizes these specially-produced microbes next to the sensing electrodes. Once the microbes come into contact with a questionable substance they produce a chemical signal that is converted to an electrical current by a device that can interpret the signals, producing a binary "toxic" or "not toxic" diagnosis.

In the future, Prof. Shacham-Diamand hopes that smaller versions of the Dip Chips might be plugged into existing mobile electronic devices, such as cell phones or tablets, to give the user a toxicity reading. This would make it an economically feasible and easy-to-use technology for people such as campers or for military purposes.

Reading any toxic material

One of the chip's advantages is its ability to identify toxicity as a biological quality instead of specific toxic chemicals. There are already excellent detectors to identify specific toxic materials, says Prof. Shacham-Diamand. The Dip Chip, however, is designed to alert the user to overall toxicity. And because the chip measures general toxicity, it will pick up on any and all toxic materials - even those that have not been discovered or invented yet.

Beyond their ability to find toxic chemicals in the field, these chips can also be put to use in the cosmetics or pharmaceuticals industries, says Prof. Shacham-Diamand. They could be used to detect the toxicity of new compounds, minimizing the controversial use of lab animals. Using the same technology, the researchers have also developed a larger-scale device which allows water to flow continuously over the sensor, making it appropriate for online, real-time monitoring of water supplies.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Blood-brain Barrier on a Chip
Researchers from Vanderbilt University have developed a microfluidic device to study the blood-brain barrier.
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
Peer Review is in Crisis, But Should be Fixed, Not Abolished
After the time to get the science done, peer review has become the slowest step in the process of sharing studies, and some scientists have had enough.
Making Every Cell Matter
New method for encapsulating single cells within microgels could boost efficacy of cell-based therapies and tissue engineering.
Modelling Cigarette Effects with Airway-on-a-Chip
An instrument that smokes cigarettes like a human, and delivers whole smoke to the air space of microfluidic human airway chips, enables new insights into how non-smokers and COPD patients respond to smoke.
Robotic Cleaning Technique Could Automate Neuroscience Research
New robotic cleaning technique allows pipettes used in patch-clamping to be re-used up to 11 or more times.
Lab-on-a-Chip to Help Detect Cancer
In this podcast, we speak to Gustavo Stolovitsky to learn about his career and the work he is doing at IBM Research.
First Entirely 3D-printed Organ-on-a-Chip with Integrated Sensors
New approach to manufacturing may allow researchers to rapidly design organs-on-chips that match the properties of a specific disease or individual patient's cells.
3D-Printing in Science: Conference Co-Staged with LABVOLUTION
LABVOLUTION 2017 will have an added highlight of a simultaneous conference, "3D-Printing in Science".
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!