Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Bio-Rad Introduces First ProteOn™ Sensor Chip

Published: Thursday, May 24, 2012
Last Updated: Thursday, May 24, 2012
Bookmark and Share
Product capable of label-free interaction analysis of membrane proteins with peptides and small molecules.

Drug Discovery Researchers Get Powerful Tool for Screening Membrane Targets.

Bio-Rad Laboratories, Inc. announced the launch of two surface plasmon resonance (SPR) kits that, when used with the ProteOn XPR36 protein interaction analysis system, enable for the first time the accurate analysis of lipids and membrane proteins with peptides and small molecules.

G-coupled protein receptors, 7-transmembrane receptors, and other integral membrane proteins constitute more than 40% of new drug targets. The new kits — the novel hydrophilic ProteOn LCP liposome capturing kit and the lipophilic ProteOn GLC lipid kit — stably and selectively capture lipids and lipid assemblies for easier screening and analysis of membrane protein targets during drug discovery.

ProteOn_LCP_Capturning_Reag.gif

ProteOn LCP Liposome Capturing Kit

The ProteOn LCP sensor employs memLayer technology to selectively and stably capture lipid assemblies. The “native-lipid like” environment of the chip surface where proteins are captured ensures high quality data.

"The memLayer approach offers an interesting alternative,” said Maria Pavlaki, a senior researcher at Democritus University of Thrace in Greece. “The proteins can be in a more native-like environment (lipoparticles or liposomes) that resembles the cell membrane and are not ‘squashed’ on the surface.”

Capable of capturing multiple layers of lipid assemblies, the ProteOn LCP liposome capturing kit SPR kit is the first to allow label-free detection for binding analysis of peptides and small molecules. And, it empowers researchers to gauge drug absorption by monitoring interactions at the lipid’s surface and tracking uptake of molecules into the assembly.

The ProteOn LCP capturing reagent kit, included in the ProteOn LCP liposome capturing kit, is used to activate the LCP sensor chip with a biotinylated DNA tag that then hybridizes to DNA-tagged lipid assemblies containing membrane proteins of interest.

The surface is easily regenerated with water and ready for re-use.

ProteOn GLC Lipid Kit

The ProteOn GLC lipid kit provides researchers with a basic, easy-to-use option to study interactions of membranes with proteins and peptides. Biopharmaceutical researchers use the kit to capture lipoparticles containing membrane protein drug targets of interest. Antibodies against those drug targets are then screened to measure binding kinetics, an important step in biotherapeutic development.

Researchers can customize the lipophilicity of the GLC sensor surface before capturing lipid assemblies (e.g. proteoliposomes and lipoparticles) by controlling the amount of alkylamine that is bound to the sensor surface. This provides greater experimental flexibility and, because the surface is stable and regenerable, researchers have greater confidence in the quality of data collected over the course of a screening protocol.

"I am very happy with the GLC lipid kit,” said Fang Yi, Ph.D., a scientist at Janssen Biotech “It’s rather straightforward, with very stable capture, high capacity, reproducibility, and also low non-specific binding. I would definitely like to use it for my future lipoparticle characterization studies.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Swiss Study Describes new Human Cytokine Research
Bio-Rad’s technical note describes a human cytokine study undertaken by Swiss researchers who used its Bio-Plex® suspension array system.
Tuesday, December 09, 2008
Bio-Rad Receives a new U.S. Patent for its BioOdyssey Calligrapher Miniarrayer
The patent enables the BioOdyssey Calligrapher MiniArrayer system to maintain movements that are required for microarrying in a benchtop instrument.
Friday, January 18, 2008
Testing Results of the BioOdyssey Calligrapher MiniArrayer for Clinical Research Available
Bio-Rad announces the availability of a technical bulletin describing results of the testing of the BioOdyssey™ Calligrapher™ MiniArrayer.
Thursday, November 08, 2007
Scientific News
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Blood-brain Barrier on a Chip
Researchers from Vanderbilt University have developed a microfluidic device to study the blood-brain barrier.
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
Peer Review is in Crisis, But Should be Fixed, Not Abolished
After the time to get the science done, peer review has become the slowest step in the process of sharing studies, and some scientists have had enough.
Making Every Cell Matter
New method for encapsulating single cells within microgels could boost efficacy of cell-based therapies and tissue engineering.
Modelling Cigarette Effects with Airway-on-a-Chip
An instrument that smokes cigarettes like a human, and delivers whole smoke to the air space of microfluidic human airway chips, enables new insights into how non-smokers and COPD patients respond to smoke.
Robotic Cleaning Technique Could Automate Neuroscience Research
New robotic cleaning technique allows pipettes used in patch-clamping to be re-used up to 11 or more times.
Lab-on-a-Chip to Help Detect Cancer
In this podcast, we speak to Gustavo Stolovitsky to learn about his career and the work he is doing at IBM Research.
First Entirely 3D-printed Organ-on-a-Chip with Integrated Sensors
New approach to manufacturing may allow researchers to rapidly design organs-on-chips that match the properties of a specific disease or individual patient's cells.
3D-Printing in Science: Conference Co-Staged with LABVOLUTION
LABVOLUTION 2017 will have an added highlight of a simultaneous conference, "3D-Printing in Science".
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!