Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Imaging Embryonic Development by Microfluidics

Published: Wednesday, June 13, 2012
Last Updated: Wednesday, June 13, 2012
Bookmark and Share
The embryonic development of zebrafish under the influence of pharmaceutical drugs can be imaged using microfluidics.

The preclinical animal study of drugs can be a costly and lengthy process. However, owing to some basic similarities with humans and their short development time, the zebrafish has emerged as a useful model for drug screening and disease profiling. For these experiments, zebrafish embryos are usually contained in the wells of a ‘multi-well plate’ — however, controlling the medium in which they are submerged and the addition of other chemicals, as well as imaging of the tissues and organs inside the zebrafish, are not straightforward using this setup.

Hanry Yu at the A*STAR Institute of Bioengineering and Nanotechnology and co-workers have devised a new and efficient microfluidic device for the growth, live imaging and monitoring of tissues and organs of zebrafish1. The researchers show how the multichannel platform, which they call ‘fish and chips’, can detect abnormalities in the tail morphology and eye of the zebrafish, in the presence of valproic acid — a drug known to cause birth defects if taken by the mother during pregnancy.

The fish and chips platform created by Yu and co-workers has three sections (see image): eight fish tanks that can each hold one zebrafish; a gradient generator that controls the administration of drugs and chemicals to the tanks; and eight outlet channels for the removal of waste products. Zebrafish have been monitored in microfluidic setups in the past, but the new platform allows the diagonal flow of solutions. As a result, the embryos remain within a consistent flow of growth medium and drugs. Yu and co-workers are able to monitor developmental changes under the influence of different concentrations of drug molecules because of this gradient method.

Another advantage is the 1.4-millimeter diameter of the individual tanks — a size that sufficiently restricts the movement of the zebrafish to allow fluorescence imaging of the fish without the need for complex manipulation of the zebrafish with needles and anaesthesia.

Using imaging methods, Yu and co-workers are able to see various tissues and organs of the zebrafish including the brain, eye, ear, olfactory bulbs, melanophores, notochord, epidermis, trunk and the distinct chambers of the heart. These detailed imaging possibilities, together with the ability to monitor long-term development of the zebrafish embryo from eight to 92 hours post-fertilization, make the fish-and-chips platform an attractive tool in drug discovery.

“Toxicity is a major cause of drug failures in clinical trials and our novel fish-and-chips device can be used as the first step in drug screening during the preclinical phase to complement existing animal models and improve toxicity testing. Our next step will involve investigating cardiotoxicity and hepatoxicity on the chip,” says Yu.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Biosensor Detects Molecules Linked to Cancer, Alzheimer's and Parkinson's
Novel biosensor has been proven capable of detecting molecules associated with neurodegenerative diseases and some types of cancer.
New Device Could Improve Cancer Detection
UBC researchers develop a microfluidic device to capture circulating tumor cells.
Gut Model HuMiX Works Like the Real Thing
Developed by scientists at the Luxembourg Centre for Systems Biology, the “Human Microbial Cross-talk” model is representative of the actual conditions and processes that occur within our intestines.
'Kidney on a Chip' Facilitates Safer Drug Dosing
University of Michigan researchers have used a "kidney on a chip" device to mimic the flow of medication through human kidneys and measure its effect on kidney cells.
AACR 2016: Cancer Immunotherapy and Beyond
At this year's meeting there was a palpable buzz around subjects ranging from microbiomics to the tumor microenvironment and cancer vaccines, big data to in vitro and in vivo modeling and drug delivery (to name just a few).
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Lab-on-a-Chip for Detecting Glucose
By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Soy Shows Promise as Natural Anti-Microbial Agent
Researchers from University of Guelph show that soy isoflavones and peptides could be used to reduce microbial contamination of food.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!