Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Nano Nod for Lab-on-a-Chip

Published: Wednesday, June 13, 2012
Last Updated: Wednesday, June 13, 2012
Bookmark and Share
Plastic chip can perform twenty genetic tests from a single drop of blood.

You wouldn’t know it from appearances, but a metal cube the size of a toaster, created at the University of Alberta, is capable of performing the same genetic tests as most fully equipped modern laboratories—and in a fraction of the time.

At its core is a small plastic chip developed with nanotechnology that holds the key to determining whether a patient is resistant to cancer drugs or has diseases like malaria. The chip can also pinpoint infectious diseases in a herd of cattle.

Talk about thinking outside the box.

Dubbed the Domino, the technology—developed by a U of A research team—has the potential to revolutionize point-of-care medicine. The innovation has also earned Aquila Diagnostic Systems, the Edmonton-based nano startup that licensed the technology, a finalist nod for this year's prestigious TEC NanoVenturePrize award.

“We’re basically replacing millions of dollars of equipment that would be in a conventional, consolidated lab with something that costs pennies to produce and is field portable so you can take it where needed. That’s where this technology shines,” said Jason Acker, an associate professor of laboratory medicine and pathology at the U of A and chief technology officer with Aquila.

The Domino employs polymerase chain reaction technology used to amplify and detect targeted sequences of DNA, but in a miniaturized form that fits on a plastic chip the size of two postage stamps. The chip contains 20 gel posts—each the size of a pinhead—capable of identifying sequences of DNA with a single drop of blood.

Each post performs its own genetic test, meaning you can not only find out whether you have malaria, but also determine the type of malaria and whether your DNA makes you resistant to certain antimalarial drugs. It takes less than an hour to process one chip, making it possible to screen large populations in a short time.

“That’s the real value proposition—being able to do multiple tests at the same time,” Acker said, adding that the Domino has been used in several recently published studies, showing similar accuracy to centralized labs.

The Domino effect: Personalized medicine

The Domino was developed by a team led by Linda Pilarski, an experimental oncologist with the Faculty of Medicine & Dentistry and a former Tier 1 Canada Research Chair in biomedical nanotechnology.
In 2008, her team received $5 million over five years from Alberta Innovates Health Solutions to perfect and commercialize the technology. As an oncologist, Pilarski is interested in its pharmacogenomic testing capabilities, such as determining whether breast cancer patients are genetically disposed to resist certain drugs.

“With most cancers you want to treat the patient with the most effective therapeutic as possible,” she said. “That’s what this does: it really enables personalized medicine. It will be able to test every patient at the right time, right in their doctor’s office. That’s currently not feasible because it’s too expensive.”

Along with its versatility, two key selling points are affordability and portability, with each portable box expected to cost about $5,000 and each chip a few dollars, says Aquila president David Alton. It’s also designed to be easy to use and rugged—important features for the livestock industry, the company’s first target market. The Domino will be put through trials within a year at one of the country’s largest feedlots in southern Alberta.

Alton credits Aquila’s relationship with the U of A, not just for the research but for the business relationship with TEC Edmonton that has helped the company license and patent Domino. TEC Edmonton is a joint venture between the U of A and Edmonton Economic Development Corporation with resources and expertise to help startups in the early stages of operations.

“We see a huge potential market for the technology and we’re looking at applying the technology developed here at the U of A to markets first in Alberta and then globally, to address important health issues here and throughout the world.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Miniaturizable Magnetic Resonance
Microscopic gem the key to new development in magnetic lab-on-a-chip technology.
Friday, November 13, 2015
Gecko-Inspired Adhesives for Microfluidics
Scientists from Canada report an affordable manufacturing advance in microfluidics with a dry adhesive system that demonstrates strong, self-healing and reversible bonding.
Tuesday, June 09, 2015
FISH and Chip Technology Serves up Cancer Breakthrough
University of Alberta research team has developed a microfludic chip which can perform Fluorescent in Situ Hybridization on a handheld diagnostic device.
Wednesday, July 25, 2007
FISH on a Chip Offers Better Cancer Diagnosis
University of Alberta researchers have miniaturized and automated a diagnostic test for cancer onto a microfluidic chip.
Wednesday, June 27, 2007
Polymers Show Promise for Lab-on-a-Chip Technology
Researchers are touting the use of liquid crystalline polymers as a viable tool for use in devices such as the sought-after lab-on-a-chip technology.
Friday, September 01, 2006
Researcher Unveils World's Largest Drug Database
DrugBank contains detailed chemical, pharmaceutical, medical and molecular biological information on 3000 drug targets.
Friday, January 06, 2006
Scientific News
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Lab-on-a-Chip for Detecting Glucose
By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Soy Shows Promise as Natural Anti-Microbial Agent
Researchers from University of Guelph show that soy isoflavones and peptides could be used to reduce microbial contamination of food.
Parsortix Demonstrates Benefits Over Marker-Based Systems
Research published online in the International Journal of Cancer, shows the ParsortixTM System efficiently captures and harvests intact, viable circulating tumour cells (CTCs), including EpCAM-negative CTCs, to allow for broader downstream CTC analysis.
Experimental Therapy For Brain Cancer Could Prevent Drug Resistance
Information from penny-sized microfluidic chips allowed researchers to anticipate resistance to cancer treatment.
3D Printing of Lego Fluidics
Study shows how 3D printing can open up microfluidic technology to a wider audience.
New Method to Preserve Device to Monitor HIV Treatment
Inspired by pregnancy tests, scientists have developed a method to store microfluidic devices for months without refrigeration, giving developing countries an inexpensive and reliable way to treat patients.
Migration Creates Cancer Cell Vulnerabilities
Scientists found that migration can damage cancer cells’ nuclei and DNA, requiring repairs for their survival. The results may open new avenues for targeting metastatic cancer.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!