Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
Become a Member | Sign in
Home>News>This Article

NIH Funds Development of Tissue Chips to Help Predict Drug Safety

Published: Wednesday, July 25, 2012
Last Updated: Wednesday, July 25, 2012
Bookmark and Share
DARPA and FDA to collaborate on therapeutic development initiative.

Seventeen National Institutes of Health grants are aimed at creating 3-D chips with living cells and tissues that accurately model the structure and function of human organs such as the lung, liver and heart.

Once developed, these tissue chips will be tested with compounds known to be safe or toxic in humans to help identify the most reliable drug safety signals - ultimately advancing research to help predict the safety of potential drugs in a faster, more cost-effective way.

The initiative marks the first interagency collaboration launched by the NIH's recently created National Center for Advancing Translational Sciences (NCATS).

Tissue chips merge techniques from the computer industry with modern tissue engineering by combining miniature models of living organ tissues on a transparent microchip.

Ranging in size from a quarter to a house key, the chips are lined with living cells and contain features designed to replicate the complex biological functions of specific organs.

NIH's newly funded Tissue Chip for Drug Screening initiative is the result of collaborations that focus the resources and ingenuity of the NIH, Defense Advanced Research Projects Agency (DARPA) and U.S. Food and Drug Administration.

NIH's Common Fund and National Institute of Neurological Disorders and Stroke led the trans-NIH efforts to establish the program. The NIH plans to commit up to $70 million over five years for the program.

“Serious adverse effects and toxicity are major obstacles in the drug development process,” said Thomas R. Insel, M.D., NCATS acting director.

Insel continued, “With innovative tools and methodologies, such as those developed by the tissue chip program, we may be able to accelerate the process by which we identify compounds likely to be safe in humans, saving time and money, and ultimately increasing the quality and number of therapies available for patients.”

More than 30 percent of promising medications have failed in human clinical trials because they are determined to be toxic despite promising pre-clinical studies in animal models.

Tissue chips, which are a newer human cell-based approach, may enable scientists to predict more accurately how effective a therapeutic candidate would be in clinical studies.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Futuristic Brain Probe Allows for Wireless Control of Neurons
NIH-funded scientists developed an ultra-thin, minimally invasive device for controlling brain cells with drugs and light.
Saturday, July 18, 2015
NIH Funds Nine Antimicrobial Resistance Diagnostics Projects
Investigators to develop tools to detect hospital-associated pathogens.
Friday, April 10, 2015
NIH Funds Next Phase of Tissue Chip for Drug Screening Program
Scientists will integrate chips mimicking human organ functions into full body system to evaluate drugs.
Thursday, September 25, 2014
NIH Awards $14.5M for DNA Sequencing Techniques
For the past several years, nanopore research has been an important focus of the program’s grants.
Tuesday, August 05, 2014
NIH, DARPA and FDA Collaborate to Develop Cutting-Edge Technologies to Predict Drug Safety
The collaboration will develop a chip to screen for safe and effective drugs far more swiftly and efficiently than current methods, and before they are tested in humans.
Monday, September 19, 2011
NIH Study Identifies Gene that Suppresses Cell's Immune Activation
FOXO3 gene suppresses activation of cells related to immunity and thus leads to a reduced immune response against a growing cancer.
Wednesday, April 06, 2011
Scientific News
Chip-Based Technology Enables Reliable Direct Detection of Ebola Virus
Hybrid device integrates a microfluidic chip for sample preparation and an optofluidic chip for optical detection of individual molecules of viral RNA.
Stem Cell Research Hints at Evolution of Human Brain
Researchers at UC San Francisco have succeeded in mapping the genetic signature of a unique group of stem cells in the human brain that seem to generate most of the neurons in our massive cerebral cortex.
Developing a Breathalyzer-Type Low Blood Sugar Warning Device For Diabetes
A multidisciplinary team of researchers at Indiana University-Purdue University Indianapolis has been awarded a $738,000 National Science Foundation grant to develop a breathalyzer-type device to detect the onset of hypoglycemia, or low blood sugar episodes, in people with diabetes.
Smartphone App to Monitor Serious Blood Disorder
A researcher from Florida Atlantic University has come up with a unique way to monitor sickle cell disease -- a serious blood disorder -- using a smart phone.
Preventing Crystallization to Improve Drug Efficiency
Esther Amstad and an international team of researchers have developed a method to increase the solubility of poorly soluble substances, such as many of the newly developed drugs.
‘Lab-on-a-Chip’ Technology Cuts Costs of Lab Tests
With ability to analyze minuscule amounts of fluid, Rutgers breakthrough could also promote central nervous system and joint research.
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Device May Detect Urinary Tract Infections Faster
A Lab-on-a-Disc platform developed by a German and Irish team of researchers dramatically cut the time to detect bacterial species that cause urinary tract infections -- a major cause of sepsis.
Automation Abound at AACC in Atlanta
Discover the latest breakthroughs, trends and products from the AACC Annual Meeting & Clinical Lab Expo.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos