Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers to Engineer Kidney Tissue Chip for Predicting Drug Safety

Published: Wednesday, August 01, 2012
Last Updated: Wednesday, August 01, 2012
Bookmark and Share
Seattle researchers will be part of the new federal initiative to engineer 3-dimensional chips containing living cells and tissues that imitate the structure and function of human organs.

Tissue chips merge techniques from the computer industry with those from bioengineering by combining miniature models of living organ tissues onto a transparent microchip. Ranging in size from a coin to a house key, the chips are lined with living cells and contain features designed to replicate the complex biological function of a specific organ.

The Seattle team will design, implement and test a tissue-engineered human kidney microphysiological system.  Kidneys, which clear the blood of waste products, are among the sensitive organs that can be damaged by certain medications, environmental toxins or an excess of natural substances produced by the body.

The Seattle project, announced July 24, is led by Dr. Jonathan Himmelfarb, University of Washington professor of medicine in the Department of Medicine, Division of Nephrology,  and director of the Kidney Research Institute.  The project team consists of physicians, bioengineers, pharmacists, environmental health researchers, and pharmaceutical developers from the UW schools of medicine, public health and pharmacy, and the College of Engineering. The amount  and years of of funding to the UW are yet to be announced, pending Notice of Grant Award. Overall, the national initiative is budgeted at $70 million.

Their project proposal is one of 17 nationwide funded in a recent round of awards from the new National Center for Advancing Translational Sciences of the National Institutes of Health.  This grant program, a collaboration with the Defense Advanced Research Projects Agency and the U.S. Food and Drug Administration, was created to improve methods for predicting whether newly developed drugs will be safe in humans.

The goal is to develop human tissue chips that simulate the structure and function of human organs, such the lung, heart, liver, and kidneys.  Scientists could then use these tissue chips to test drug candidates and predict their safety before the next step, human drug studies. This approach is expected be more rapid and cost effective than those currently available.

The NIH pointed to studies that show that more than 30 percent of promising medications have failed in human clinical trials because the drugs were found to be toxic, despite pre-clinical studies in animal models. Tissue chips may offer more accurate predictions of the side effects of potential therapeutic agents because they contain human cells.

Ten of the 17 new awards will support studies to design 3-dimensional cellular microsystems that represent different human organs. These bioengineered devices will produce relevant physiological functions and will reflect the complexity and diversity of living organs, including genetic differences, disease complexity and pharmacological responses.  The additional seven National Center for Advancing Translational Sciences awards will explore the potential of stem cells and progenitor cells to form the many cell types that make up the architecture of complex organs. These could be a source of cells to populate tissue chips.

Himmelfarb and his colleagues propose to create a tiny, 3-dimensional lab device containing engineered biological tissues that will perform certain actions of a living human kidney.  The system would evaluate the uptake, breakdown and elimination of potentially toxic substances, and predict the rate for these chemical reactions. The system might also help assess kidney injury from infections disease organisms and from toxins, both those introduced into the body and those produced by the body.

The micro-model of kidney physiology will also feature two parallel structures – small blood vessels and the surface lining of the renal tubules.  This aspect of the device will enable researchers to study the complex interactions between these two structures, which are normally in intimate association inside each of the functional units of the kidney, the nephrons.

In addition to Himmelfarb, the UW project team includes Jeremy Duffield from the Department of Medicine, Division of Nephrology; Ying Zheng from the Department of Bioengineering; Ken Thummel and Joanne Wang from the Department of Pharmaceutics; David Eaton, of the Department of Environmental and Occupational Health and the UW Center for Ecogentics and Environmental Health, and Danny Shen from the Department of Pharmacy.

Nortis Inc., a bioengineering start-up company funded through  the UW’s Center for Commercialization, will also be a partner in the project. Thomas Neumann is president and CEO of Nortis.  Project plans include using the Life Sciences Discovery Fund-supported Washington Phenotype Biospecimen Resource to obtain kidney tissue specimens for the project.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

UW to Invest $37 Million in Nanofabrication Lab
The Washington Nanofabrication Facility is being developed to support start-ups and researchers who can not afford to invest high tech nano production equipment.
Wednesday, August 05, 2015
Microfluidics Device Could Help Diagnose Pancreatic Cancer in Minutes
This is the first time material larger than a single-celled organism has successfully moved in a microfluidic device.
Monday, February 10, 2014
Scientific News
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Lab-on-a-Chip for Detecting Glucose
By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Soy Shows Promise as Natural Anti-Microbial Agent
Researchers from University of Guelph show that soy isoflavones and peptides could be used to reduce microbial contamination of food.
Parsortix Demonstrates Benefits Over Marker-Based Systems
Research published online in the International Journal of Cancer, shows the ParsortixTM System efficiently captures and harvests intact, viable circulating tumour cells (CTCs), including EpCAM-negative CTCs, to allow for broader downstream CTC analysis.
Experimental Therapy For Brain Cancer Could Prevent Drug Resistance
Information from penny-sized microfluidic chips allowed researchers to anticipate resistance to cancer treatment.
3D Printing of Lego Fluidics
Study shows how 3D printing can open up microfluidic technology to a wider audience.
New Method to Preserve Device to Monitor HIV Treatment
Inspired by pregnancy tests, scientists have developed a method to store microfluidic devices for months without refrigeration, giving developing countries an inexpensive and reliable way to treat patients.
Migration Creates Cancer Cell Vulnerabilities
Scientists found that migration can damage cancer cells’ nuclei and DNA, requiring repairs for their survival. The results may open new avenues for targeting metastatic cancer.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!