Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
Become a Member | Sign in
Home>News>This Article

Acoustic Cell-Sorting Chip may Lead to Cell Phone-Sized Medical Labs

Published: Wednesday, October 17, 2012
Last Updated: Wednesday, October 17, 2012
Bookmark and Share
A technique that uses acoustic waves to sort cells on a chip may create miniature medical analytic devices that could make Star Trek's tricorder seem a bit bulky in comparison.

The device uses two beams of acoustic -- or sound -- waves to act as acoustic tweezers and sort a continuous flow of cells on a dime-sized chip, said Tony Jun Huang, associate professor of engineering science and mechanics, Penn State. By changing the frequency of the acoustic waves, researchers can easily alter the paths of the cells.

Huang said that since the device can sort cells into five or more channels, it will allow more cell types to be analyzed simultaneously, which paves the way for smaller, more efficient and less expensive analytic devices.

"Eventually, you could do analysis on a device about the size of a cell phone," said Huang. "It's very doable and we're making in-roads to that right now."

Biological, genetic and medical labs could use the device for various types of analysis, including blood and genetic testing, Huang said.

Most current cell-sorting devices allow the cells to be sorted into only two channels in one step, according to Huang. He said that another drawback of current cell-sorting devices is that cells must be encapsulated into droplets, which complicates further analysis.

"Today, cell sorting is done on bulky and very expensive devices," said Huang. "We want to minimize them so they are portable, inexpensive and can be powered by batteries."

Using sound waves for cell sorting is less likely to damage cells than current techniques, Huang added.
In addition to the inefficiency and the lack of controllability, current methods produce aerosols, gases that require extra safety precautions to handle.

The researchers, who released their findings in the current edition of Lab on a Chip, created the acoustic wave cell-sorting chip using a layer of silicone -- polydimethylsiloxane. According to Huang, two parallel transducers, which convert alternating current into acoustic waves, were placed at the sides of the chip. As the acoustic waves interfere with each other, they form pressure nodes on the chip. As cells cross the chip, they are channeled toward these pressure nodes.

The transducers are tunable, which allows researchers to adjust the frequencies and create pressure nodes on the chip.

The researchers first tested the device by sorting a stream of fluorescent polystyrene beads into three channels. Prior to turning on the transducer, the particles flowed across the chip unimpeded. Once the transducer produced the acoustic waves, the particles were separated into the channels.

Following this experiment, the researchers sorted human white blood cells that were affected by leukemia. The leukemia cells were first focused into the main channel and then separated into five channels.

The device is not limited to five channels, according to Huang.

"We can do more," Huang said. "We could do 10 channels if we want, we just used five because we thought it was impressive enough to show that the concept worked."

Huang worked with Xiaoyun Ding, graduate student, Sz-Chin Steven Lin, postdoctoral research scholar, Michael Ian Lapsley, graduate student, Xiang Guo, undergraduate student, Chung Yu Keith Chan, doctoral student, Sixing Li, doctoral student, all of the Department of Engineering Science and Mechanics at Penn State; Lin Wang, Ascent BioNano Technologies; and J. Philip McCoy, National Heart, Lung and Blood Institute, National Institutes of Health.

The National Institutes of Health Director's New Innovator Award, the National Science Foundation, Graduate Research Fellowship and the Penn State Center for Nanoscale Science supported this work.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Motor Proteins may be Vehicles for Drug Delivery
Specialized motor proteins that transport cargo within cells could be turned into nanoscale machines for drug delivery, according to bioengineers.
Wednesday, April 01, 2009
Scientific News
Chip-Based Technology Enables Reliable Direct Detection of Ebola Virus
Hybrid device integrates a microfluidic chip for sample preparation and an optofluidic chip for optical detection of individual molecules of viral RNA.
Stem Cell Research Hints at Evolution of Human Brain
Researchers at UC San Francisco have succeeded in mapping the genetic signature of a unique group of stem cells in the human brain that seem to generate most of the neurons in our massive cerebral cortex.
Developing a Breathalyzer-Type Low Blood Sugar Warning Device For Diabetes
A multidisciplinary team of researchers at Indiana University-Purdue University Indianapolis has been awarded a $738,000 National Science Foundation grant to develop a breathalyzer-type device to detect the onset of hypoglycemia, or low blood sugar episodes, in people with diabetes.
Smartphone App to Monitor Serious Blood Disorder
A researcher from Florida Atlantic University has come up with a unique way to monitor sickle cell disease -- a serious blood disorder -- using a smart phone.
Preventing Crystallization to Improve Drug Efficiency
Esther Amstad and an international team of researchers have developed a method to increase the solubility of poorly soluble substances, such as many of the newly developed drugs.
‘Lab-on-a-Chip’ Technology Cuts Costs of Lab Tests
With ability to analyze minuscule amounts of fluid, Rutgers breakthrough could also promote central nervous system and joint research.
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Device May Detect Urinary Tract Infections Faster
A Lab-on-a-Disc platform developed by a German and Irish team of researchers dramatically cut the time to detect bacterial species that cause urinary tract infections -- a major cause of sepsis.
Automation Abound at AACC in Atlanta
Discover the latest breakthroughs, trends and products from the AACC Annual Meeting & Clinical Lab Expo.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos