Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
Become a Member | Sign in
Home>News>This Article

Optical Vortices on a Chip

Published: Monday, October 22, 2012
Last Updated: Monday, October 22, 2012
Bookmark and Share
An international research group has demonstrated integrated arrays of emitters of so called ‘optical vortex beams’ onto a silicon chip.

Contradicting traditional conception, light in such beams does not propagate in straight rays. Instead, its energy travels in a spiral fashion in a hollow conical beam shape. The beams therefore look very much like a vortex or cyclone, with its light rays ‘twisted’ either left-handed or right-handed.  In theory, there is no limit to how twisted the light rays can be.

In quantum mechanics, this feature is associated with the ‘orbital angular momentum’ (OAM) of photons – photons in such beams can be thought to orbit around the beam axis, somewhat similar to the movement of planets around the Sun or electrons around a nucleus.

When such light interacts with matter, it asserts a rotational force (a torque) on the matter; therefore it can be used as so called ‘optical spanners’ in addition to ‘optical tweezers’, which can rotate as well as trap microscopic particles or droplets. Different degree of twist can also be used to transmit information – allowing more information to be carried by a single optical signal, and increasing the capacity of optical communications links.

Light beams at the same frequency but with different OAM values can be used to transmit different streams information. Single particles of light (photons) can use these different degrees of twist to represent quantum information, where a single photon can be twisting both clockwise and anti-clockwise at the same time. Applications are also being developed in using such light for imaging and sensing purposes. For example some molecules are chiral - they look the same under normal optical microscopes until illuminated by optical vortex beams with different degrees or directions of twist.

Conventionally the generation of such beams relied on bulk optical elements such as plates, lenses, and holograms. These are good for research but can be inconvenient for many applications, in particular where large numbers of such beams are needed at high packing density.

In contrast, the new emitters invented at Bristol are only a few micrometres in size and thousands of times smaller than conventional elements. They are based on silicon optical waveguides and can be made using standard integrated circuit fabrication technologies.

Siyuan Yu, Professor of Photonics Information Systems in the Photonics Research Group at the University of Bristol, who led the research, said: “Our microscopic optical vortex devices are so small and compact that silicon micro-chip containing thousands of emitters could be fabricated at very low costs and in high volume.

“Such integrated devices and systems could open up entirely new applications of optical vortex beams previously unattainable using bulk optics.”

These devices are readily interconnected with each other to form complex and large arrays in photonic integrated circuits, and could be used for applications including communications, sensing and microscopic particle manipulation.

Dr Mark Thompson, Deputy Director of the Centre for Quantum Photonics at the University of Bristol, added: “Perhaps one of the most exciting applications is the control of twisted light at the single photon level, enabling us to exploit the quantum mechanical properties of optical vortices for future applications in quantum communications and quantum computation.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Discovery Provides New Opportunities for Chips
Scientists at the University of Twente's MESA+ research institute have developed a new manufacturing method to create three-dimensional nanostructures.
Penn Engineering Team Showcases ‘Eye-on-a-Chip’ Technology
These small plastic chips contain microfluidic channels, carefully designed so that human cells can grow in them in a way that simulates the three-dimensional environments they would normally inhabit in the body.
Miniaturizable Magnetic Resonance
Microscopic gem the key to new development in magnetic lab-on-a-chip technology.
Education and Expense: The Barriers to Mass Spectrometry in Clinical Laboratories?
Here we examine the perceived barriers to mass spec in clinical laboratories and explore the possible drivers behind the recent shift in uptake of the technology in clinical settings.
Chip-Based Technology Enables Reliable Direct Detection of Ebola Virus
Hybrid device integrates a microfluidic chip for sample preparation and an optofluidic chip for optical detection of individual molecules of viral RNA.
Stem Cell Research Hints at Evolution of Human Brain
Researchers at UC San Francisco have succeeded in mapping the genetic signature of a unique group of stem cells in the human brain that seem to generate most of the neurons in our massive cerebral cortex.
Developing a Breathalyzer-Type Low Blood Sugar Warning Device For Diabetes
A multidisciplinary team of researchers at Indiana University-Purdue University Indianapolis has been awarded a $738,000 National Science Foundation grant to develop a breathalyzer-type device to detect the onset of hypoglycemia, or low blood sugar episodes, in people with diabetes.
Smartphone App to Monitor Serious Blood Disorder
A researcher from Florida Atlantic University has come up with a unique way to monitor sickle cell disease -- a serious blood disorder -- using a smart phone.
Preventing Crystallization to Improve Drug Efficiency
Esther Amstad and an international team of researchers have developed a method to increase the solubility of poorly soluble substances, such as many of the newly developed drugs.
‘Lab-on-a-Chip’ Technology Cuts Costs of Lab Tests
With ability to analyze minuscule amounts of fluid, Rutgers breakthrough could also promote central nervous system and joint research.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos