Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Flow Technologies in Bioscience Review

Published: Monday, October 29, 2012
Last Updated: Monday, October 29, 2012
Bookmark and Share
The conference highlighted the importance of collaboration between chemists, biologists, material scientists, IT and mechanical engineers, and of course equipment vendors to increase the effectiveness of flow technologies within Bioscience.

Microsaic Systems presented at ‘Flow Technologies in Bioscience’ organised by Labstract and held at the newly opened Stevenage Bioscience Catalyst Innovation centre.

Suki Klair, CEO at Labstract organised a stimulating agenda of speakers with a focus on enabling new applications via flow technologies.

Steve Jordan, Head of R&D, Biotage chaired the event and set the scene by commenting that continuous processing was gaining ground within the pharma industry and welcomed the speakers who ranged from academic thought leaders in flow, including Professor Steve Haswell, University of Hull, to equipment vendors including Microsaic Systems.

Many people are still on the fence about the benefits of flow chemistry, and in some cases it doesn’t make sense to change processes that are working in batch. However, as chemists search for more novel transformations they are forced to look at hazardous transformations such as ozonolysis and diazotisation and this is where flow chemistry can provide significant safety improvements to batch methods. Flow technology is here to stay. It will not replace batch chemistry but it does provide another tool in the chemist’s tool box.

Syrris highlighted a compelling example of this from the BOSS group in Rio de Janeiro where flow through a biocatalyst had increased catalyst efficiency by 10 times, compared to batch. They also mentioned a new electrochemistry module that will be available next year. Electrochemistry is a lost art so a database of reactions will be built up by key users and shared by Syrris on their website.

Matt O’Brien, Keele University talked about his time in the Ley lab, University of Cambridge where gas-liquid reactions have been successfully performed safely in flow with hazardous gases such as ozone using the innovative tube-in-a-tube reactors available from Uniqsis and Cambridge Reactor Design.

Bryan McCullough, Microsaic showed the first example of mass spectrometry being used to monitor a flow reaction which was jointly published with the Ley group, University of Cambridge. Mass spectrometry is not new, but the new miniature MS, the MiD fits in a fumehood, giving chemists access to this useful technique. Both Mettler Toledo, manufacturer of the Flow-IR and Microsaic showed that using on-line monitoring can greatly increase reaction understanding. The Ley group uses these technologies to increase the speed of reaction optimisation and identify new reaction intermediates and pathways.

Chris Selway gave us an insight into what is happening at Cyclofluidic. Their novel synthesis platform allows compounds to be synthesised from a set of pre-loaded monomers, purified, analysed, and then injected into a biological assay. Their algorithm “learns” which compounds are most potent and the computer decides which compound to make next. Each cycle takes 1 hour and over a weekend a candidate compound can be found. This is “closing the loop” of drug discovery, enabled by flow technologies.

Professor Steve Haswell, University of Hull is at the cutting edge of lab-on-a-chip technologies and highlighted the potential use of functionalised microfluidic devices that could be used by police and doctors for point-of-use applications. It was interesting to hear that regulatory bodies are positive about these new, disruptive technologies and actually the barrier-to-entry is the institutions who will resist change, in spite of cost and time savings.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Microsaic Systems Wins R&D 100 Award for the World’s Most Compact Mass Spectrometer
Microsaic’s 3500 MiD mass spectrometer has been chosen winner by an independent judging panel and the editors of R&D Magazine.
Friday, June 22, 2012
Microsaic Systems Appoint Sales and Marketing Manager
Microsaic Systems plc announces that Samantha Dunnage has joined to lead the Company’s marketing and direct sales.
Monday, August 08, 2011
Microsaic Systems - First-to-market Developer of Miniaturized Chip-based Scientific Instruments
Microsaic Systems plc, has announced that it has raised gross proceeds of £4 million by way of an institutional placing in connection with the forthcoming admission of its shares to trading on the AIM market of the London Stock Exchange.
Wednesday, April 06, 2011
Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Device May Detect Urinary Tract Infections Faster
A Lab-on-a-Disc platform developed by a German and Irish team of researchers dramatically cut the time to detect bacterial species that cause urinary tract infections -- a major cause of sepsis.
Automation Abound at AACC in Atlanta
Discover the latest breakthroughs, trends and products from the AACC Annual Meeting & Clinical Lab Expo.
Real-Time Data for Cancer Therapy
Biochemical sensor implanted at initial biopsy could allow doctors to better monitor and adjust cancer treatments.
Lab-on-a-Chip Offers Promise for TB and Asthma Patients
A device to mix liquids using ultrasonics is the first and most difficult component in a miniaturized system for low-cost analysis of sputum from patients with pulmonary diseases such as tuberculosis and asthma.
Paving the way to Better Ovarian Cancer Diagnosis
Aïcha BenTaieb will present her invention for automated identification of ovarian cancer’s many subtypes at an international conference this fall.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Futuristic Brain Probe Allows for Wireless Control of Neurons
NIH-funded scientists developed an ultra-thin, minimally invasive device for controlling brain cells with drugs and light.
Microfluidic Device Mixes And Matches DNA For Synthetic Biology
Researchers have developed a microfluidic device that quickly builds packages of DNA and delivers them into bacteria or yeast for further testing.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!