Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Measuring Flow Using a Wobbling Tube

Published: Wednesday, January 16, 2013
Last Updated: Wednesday, January 16, 2013
Bookmark and Share
One milligram per hour: fluid flow can be measured with great precision using a tiny ‘wobbling’ tube with a diameter of only 40 micrometres.

Thanks to a new technique, the sensor, which makes use of the ‘Coriolis effect’, can be made even more compact, e.g. for medical applications. Scientists at the University of Twente’s MESA+ Institute for Nanotechnology have published an article on the subject in Applied Physics Letters.

Coriolis meters are often enormous instruments mounted in a pipeline to measure liquid flow accurately. Reduced to micrometre dimensions the result is a sensor that can measure extremely slow-moving small quantities of fluids. The fluid is passed through a tiny rectangular tube that is made to wobble. The Coriolis effect then causes the tube to move upwards as well, and this upward displacement is a measure of the amount of fluid flowing through it.

No magnets
Until now magnets have been used to bring about the wobbling motion. One of the problems was that the magnets are far bigger than the actual sensor. In the Applied Physics Letters article researcher Harmen Droogendijk introduces a new method, known as ‘parametric excitation’. Dozens of ‘electric fingers’ attached to the tube fit between identical opposing fingers mounted on supports running parallel to the tube. The extent to which these opposing sets of fingers slide between one another can be used to measure the tube's lateral displacement. But we could also use them to set the tube in motion, thought Droogendijk. He found that there is a limited area of electrical tension where the tube moves up and down much more than at a lower or higher tension, though this has to be tuned very precisely. Droogendijk carried out mathematical modelling, resulting in a new design that no longer needs magnets. More research is needed to find out whether the current lower limit of approximately 1 milligram per hour can be lowered even further.

The research was carried out in the Transducers Science and Technology group led by Prof. Gijs Krijnen, which is part of the University of Twente’s MESA+ Institute for Nanotechnology. It received financial support from NanoNed NL.

More research is needed to find out whether the current lower limit of approximately 1 milligram per hour can be lowered even further.

The Coriolis mass flow sensor is being further developed by Bronkhorst High-Tech in Ruurlo to produce a precision instrument for such things as monitoring medical IV pumps, analysing medicines using liquid chromatography, and use in microreactors and the manufacture of solar cells.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Discovery Provides New Opportunities for Chips
Scientists at the University of Twente's MESA+ research institute have developed a new manufacturing method to create three-dimensional nanostructures.
Thursday, November 19, 2015
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Biosensor Detects Molecules Linked to Cancer, Alzheimer's and Parkinson's
Novel biosensor has been proven capable of detecting molecules associated with neurodegenerative diseases and some types of cancer.
New Device Could Improve Cancer Detection
UBC researchers develop a microfluidic device to capture circulating tumor cells.
Gut Model HuMiX Works Like the Real Thing
Developed by scientists at the Luxembourg Centre for Systems Biology, the “Human Microbial Cross-talk” model is representative of the actual conditions and processes that occur within our intestines.
'Kidney on a Chip' Facilitates Safer Drug Dosing
University of Michigan researchers have used a "kidney on a chip" device to mimic the flow of medication through human kidneys and measure its effect on kidney cells.
AACR 2016: Cancer Immunotherapy and Beyond
At this year's meeting there was a palpable buzz around subjects ranging from microbiomics to the tumor microenvironment and cancer vaccines, big data to in vitro and in vivo modeling and drug delivery (to name just a few).
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Lab-on-a-Chip for Detecting Glucose
By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Soy Shows Promise as Natural Anti-Microbial Agent
Researchers from University of Guelph show that soy isoflavones and peptides could be used to reduce microbial contamination of food.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!