Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
Become a Member | Sign in
Home>News>This Article

Flow Reactor Delivers Highly Reproducible Bromination

Published: Friday, March 22, 2013
Last Updated: Friday, March 22, 2013
Bookmark and Share
Offers excellent control of both temperature and mixing using a proprietary mixer chip.

Uniqsis has announced an application note that describes a continuous flow methodology for electrophilic bromination that offers excellent control of both temperature and mixing using a proprietary mixer chip, leading to a highly reproducible outcome.

Electrophilic bromination is a useful reaction in organic synthesis. However, when molecular bromine is used as the electrophile, under acidic conditions, it can be difficult to control both the exothermic addition and to prevent subsequent bis-bromination of the desired monobrominated product.

In application note 21 - the authors demonstrate that using a static mixer chip on a FlowSyn flow chemistry system to control both mixing and temperature - bromination becomes a titration and the reaction can be performed rapidly under elevated temperatures.

The bromination could be performed in a coil reactor however the short reaction time of 30 seconds at 70°C makes it better suited to implementation in a chip.

The authors suggest how the chip based bromination methodology could be straightforwardly scaled to 28g / hour by connecting a 5 ml HT-PTFE coil reactor in line with the mixer chip and increasing the flow rate to 13.2 ml/min.

The Uniqsis FlowSyn™ is a compact integrated continuous flow reactor system designed for easy, safe and efficient operation.

The FlowSyn™ range includes models for performing single or multiple homogeneous or heterogeneous reactions, either manually or automatically.

The range of chemistries that can be explored with Uniqsis’ integrated and modular flow chemistry systems grows ever wider and is exemplified by the growing number of applications published both in the academic press and in Uniqsis’ own application notes.

Typical examples of flow chemistry applications include hydrogenation, nitration, bromination, metalation, molecular rearrangements and synthesis of compounds suchas dihyropyridine, indole, pyrazole, quinolinone and benzimidazole.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Discovery Provides New Opportunities for Chips
Scientists at the University of Twente's MESA+ research institute have developed a new manufacturing method to create three-dimensional nanostructures.
Penn Engineering Team Showcases ‘Eye-on-a-Chip’ Technology
These small plastic chips contain microfluidic channels, carefully designed so that human cells can grow in them in a way that simulates the three-dimensional environments they would normally inhabit in the body.
Miniaturizable Magnetic Resonance
Microscopic gem the key to new development in magnetic lab-on-a-chip technology.
Education and Expense: The Barriers to Mass Spectrometry in Clinical Laboratories?
Here we examine the perceived barriers to mass spec in clinical laboratories and explore the possible drivers behind the recent shift in uptake of the technology in clinical settings.
Chip-Based Technology Enables Reliable Direct Detection of Ebola Virus
Hybrid device integrates a microfluidic chip for sample preparation and an optofluidic chip for optical detection of individual molecules of viral RNA.
Stem Cell Research Hints at Evolution of Human Brain
Researchers at UC San Francisco have succeeded in mapping the genetic signature of a unique group of stem cells in the human brain that seem to generate most of the neurons in our massive cerebral cortex.
Developing a Breathalyzer-Type Low Blood Sugar Warning Device For Diabetes
A multidisciplinary team of researchers at Indiana University-Purdue University Indianapolis has been awarded a $738,000 National Science Foundation grant to develop a breathalyzer-type device to detect the onset of hypoglycemia, or low blood sugar episodes, in people with diabetes.
Smartphone App to Monitor Serious Blood Disorder
A researcher from Florida Atlantic University has come up with a unique way to monitor sickle cell disease -- a serious blood disorder -- using a smart phone.
Preventing Crystallization to Improve Drug Efficiency
Esther Amstad and an international team of researchers have developed a method to increase the solubility of poorly soluble substances, such as many of the newly developed drugs.
‘Lab-on-a-Chip’ Technology Cuts Costs of Lab Tests
With ability to analyze minuscule amounts of fluid, Rutgers breakthrough could also promote central nervous system and joint research.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos