Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Flow Reactor Delivers Highly Reproducible Bromination

Published: Friday, March 22, 2013
Last Updated: Friday, March 22, 2013
Bookmark and Share
Offers excellent control of both temperature and mixing using a proprietary mixer chip.

Uniqsis has announced an application note that describes a continuous flow methodology for electrophilic bromination that offers excellent control of both temperature and mixing using a proprietary mixer chip, leading to a highly reproducible outcome.

Electrophilic bromination is a useful reaction in organic synthesis. However, when molecular bromine is used as the electrophile, under acidic conditions, it can be difficult to control both the exothermic addition and to prevent subsequent bis-bromination of the desired monobrominated product.

In application note 21 - the authors demonstrate that using a static mixer chip on a FlowSyn flow chemistry system to control both mixing and temperature - bromination becomes a titration and the reaction can be performed rapidly under elevated temperatures.

The bromination could be performed in a coil reactor however the short reaction time of 30 seconds at 70°C makes it better suited to implementation in a chip.

The authors suggest how the chip based bromination methodology could be straightforwardly scaled to 28g / hour by connecting a 5 ml HT-PTFE coil reactor in line with the mixer chip and increasing the flow rate to 13.2 ml/min.

The Uniqsis FlowSyn™ is a compact integrated continuous flow reactor system designed for easy, safe and efficient operation.

The FlowSyn™ range includes models for performing single or multiple homogeneous or heterogeneous reactions, either manually or automatically.

The range of chemistries that can be explored with Uniqsis’ integrated and modular flow chemistry systems grows ever wider and is exemplified by the growing number of applications published both in the academic press and in Uniqsis’ own application notes.

Typical examples of flow chemistry applications include hydrogenation, nitration, bromination, metalation, molecular rearrangements and synthesis of compounds suchas dihyropyridine, indole, pyrazole, quinolinone and benzimidazole.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Lab-on-a-Chip for Detecting Glucose
By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Soy Shows Promise as Natural Anti-Microbial Agent
Researchers from University of Guelph show that soy isoflavones and peptides could be used to reduce microbial contamination of food.
Parsortix Demonstrates Benefits Over Marker-Based Systems
Research published online in the International Journal of Cancer, shows the ParsortixTM System efficiently captures and harvests intact, viable circulating tumour cells (CTCs), including EpCAM-negative CTCs, to allow for broader downstream CTC analysis.
Experimental Therapy For Brain Cancer Could Prevent Drug Resistance
Information from penny-sized microfluidic chips allowed researchers to anticipate resistance to cancer treatment.
3D Printing of Lego Fluidics
Study shows how 3D printing can open up microfluidic technology to a wider audience.
New Method to Preserve Device to Monitor HIV Treatment
Inspired by pregnancy tests, scientists have developed a method to store microfluidic devices for months without refrigeration, giving developing countries an inexpensive and reliable way to treat patients.
Migration Creates Cancer Cell Vulnerabilities
Scientists found that migration can damage cancer cells’ nuclei and DNA, requiring repairs for their survival. The results may open new avenues for targeting metastatic cancer.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!