Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Non-Wetting Fabric Drains Sweat

Published: Tuesday, May 21, 2013
Last Updated: Tuesday, May 21, 2013
Bookmark and Share
Waterproof fabrics that whisk away sweat could be the latest application of microfluidic technology developed by bioengineers.

The new fabric works like human skin, forming excess sweat into droplets that drain away by themselves, said inventor Tingrui Pan, professor of biomedical engineering. One area of research in Pan's Micro-Nano Innovations Laboratory at UC Davis is a field known as microfluidics, which focuses on making "lab on a chip" devices that use tiny channels to manipulate fluids. Pan and his colleagues are developing such systems for applications like medical diagnostic tests.

Graduate students Siyuan Xing and Jia Jiang developed a new textile microfluidic platform using hydrophilic (water-attracting) threads stitched into a highly water-repellent fabric. They were able to create patterns of threads that suck droplets of water from one side of the fabric, propel them along the threads and expel them from the other side.

"We intentionally did not use any fancy microfabrication techniques so it is compatible with the textile manufacturing process and very easy to scale up," said Xing, lead graduate student on the project.

It's not just that the threads conduct water through capillary action. The water-repellent properties of the surrounding fabric also help drive water down the channels. Unlike conventional fabrics, the water-pumping effect keeps working even when the water-conducting fibers are completely saturated, because of the sustaining pressure gradient generated by the surface tension of droplets.

The rest of the fabric stays completely dry and breathable. By adjusting the pattern of water-conducting fibers and how they are stitched on each side of the fabric, the researchers can control where sweat is collected and where it drains away on the outside.

Workout enthusiasts, athletes and clothing manufacturers are all interested in fabrics that remove sweat and let the skin breathe. Cotton fibers, for example, wick away sweat — but during heavy exercise, cotton can get soaked, making it clingy and uncomfortable.

A paper describing the research was published recently in the journal Lab on a Chip. The work was funded in part by the National Science Foundation.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

‘Human-on-a-Chip’ Could Replace Animal Testing
Researchers are developing a “human-on-a-chip,” a miniature external replication of the human body, integrating biology and engineering with a combination of microfluidics and multi-electrode arrays.
Monday, June 13, 2016
Genome Center to Encourage Cooperative, Efficient Research
The center will include customized equipment such as a microarray robot and software, a microarray scanner and a liquid handling robot.
Wednesday, October 12, 2005
Scientific News
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Blood-brain Barrier on a Chip
Researchers from Vanderbilt University have developed a microfluidic device to study the blood-brain barrier.
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
Peer Review is in Crisis, But Should be Fixed, Not Abolished
After the time to get the science done, peer review has become the slowest step in the process of sharing studies, and some scientists have had enough.
Making Every Cell Matter
New method for encapsulating single cells within microgels could boost efficacy of cell-based therapies and tissue engineering.
Modelling Cigarette Effects with Airway-on-a-Chip
An instrument that smokes cigarettes like a human, and delivers whole smoke to the air space of microfluidic human airway chips, enables new insights into how non-smokers and COPD patients respond to smoke.
Robotic Cleaning Technique Could Automate Neuroscience Research
New robotic cleaning technique allows pipettes used in patch-clamping to be re-used up to 11 or more times.
Lab-on-a-Chip to Help Detect Cancer
In this podcast, we speak to Gustavo Stolovitsky to learn about his career and the work he is doing at IBM Research.
First Entirely 3D-printed Organ-on-a-Chip with Integrated Sensors
New approach to manufacturing may allow researchers to rapidly design organs-on-chips that match the properties of a specific disease or individual patient's cells.
3D-Printing in Science: Conference Co-Staged with LABVOLUTION
LABVOLUTION 2017 will have an added highlight of a simultaneous conference, "3D-Printing in Science".
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!