Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Random, Scattered, and Ultra Tiny: A Spectrometer for the Future

Published: Wednesday, July 31, 2013
Last Updated: Wednesday, July 31, 2013
Bookmark and Share
Sometimes a little disorder is precisely what’s in order.

Taking advantage of the sensitive nature of randomly scattered light, Yale University researchers have developed an ultra-compact, low-cost spectrometer with improved resolution over existing micro models. The innovation represents an advance in “lab-on-a-chip” technology, or the consolidation of laboratory capabilities in miniature, highly portable devices.

“The largest dimension of our spectrometer, which we built on a silicon chip, is about the width of a human hair,” said Brandon Redding, a postdoctoral associate in applied physics at Yale and lead author of research published online in the journal Nature Photonics. “It could open up a whole new range of uses, a lot of them outside the lab.”

Hui Cao, professor of applied physics and physics at Yale, is principal investigator.

Spectrometers are instruments that measure the different wavelengths (i.e. colors) of light and can be used to identify substances’ chemical composition and for other types of materials analysis. They are used in biomedical imaging, defense, telecommunications, and many other fields, as well as in fundamental science research. Tiny spectrometers are desirable both for their extreme portability and because they could be mass-produced at a low cost.

Standard commercial spectrometers range in size from a few inches to a few feet and currently cost thousands of dollars, mainly because resolution typically correlates with the size of the device: The bigger the device, the better the resolution. But this adds to expense and limits versatility.

The Yale researchers worked around this problem by introducing randomly placed holes in the silicon chip to scatter incoming light. Prevented from traveling in a straight line, the light beams bounce from one hole to another, increasing the effective distance they travel to get through the chip. This results in better resolution, despite the tiny scale of the device.

“In our case, resolution scales with the square of the size of the device,” Redding said. “We get a much longer path length for our light relative to the size of the device, because the light bounces around many times.”

In tests, the researchers showed that their micro spectrometer can detect a change in wavelength of less than one nanometer, roughly matching the capability of macroscopic spectrometers about the size of a hard drive.

While standard tabletop spectrometers still offer significantly greater resolution, the researchers said, the tiny new spectrometer represents an improvement over existing on-chip spectrometers, which have generally required tradeoffs in sensitivity, resolution, or ease of fabrication as they’ve become smaller.

“We’re taking a very different approach,” said Redding. “The idea of using disorder and multiple scattering is a fairly unexplored concept. Normally, disorder is something you want to overcome or avoid. In this case, it’s what lets us make the device so small.”

The paper is titled “Compact spectrometer based on a disordered photonic chip.” Co-authors are Seng Fatt Liew and Raktim Sarma, also of Yale.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Single-Cell, 42-plexed Protein Analysis Achieved with a New Microchip Technology
A novel microdevice capable of detecting 42 unique immune effector proteins has been developed.
Tuesday, February 17, 2015
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Biosensor Detects Molecules Linked to Cancer, Alzheimer's and Parkinson's
Novel biosensor has been proven capable of detecting molecules associated with neurodegenerative diseases and some types of cancer.
New Device Could Improve Cancer Detection
UBC researchers develop a microfluidic device to capture circulating tumor cells.
Gut Model HuMiX Works Like the Real Thing
Developed by scientists at the Luxembourg Centre for Systems Biology, the “Human Microbial Cross-talk” model is representative of the actual conditions and processes that occur within our intestines.
'Kidney on a Chip' Facilitates Safer Drug Dosing
University of Michigan researchers have used a "kidney on a chip" device to mimic the flow of medication through human kidneys and measure its effect on kidney cells.
AACR 2016: Cancer Immunotherapy and Beyond
At this year's meeting there was a palpable buzz around subjects ranging from microbiomics to the tumor microenvironment and cancer vaccines, big data to in vitro and in vivo modeling and drug delivery (to name just a few).
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Lab-on-a-Chip for Detecting Glucose
By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Soy Shows Promise as Natural Anti-Microbial Agent
Researchers from University of Guelph show that soy isoflavones and peptides could be used to reduce microbial contamination of food.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!