Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Microfluidic Breakthrough in Biotechnology

Published: Tuesday, August 06, 2013
Last Updated: Tuesday, August 06, 2013
Bookmark and Share
Chemical flasks and inconvenient chemostats for cultivation of bacteria are likely soon to be discarded.

Researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw were first to construct a microfluidic system allowing for merging, transporting and splitting of microdroplets. Since now, hundreds of different bacteria cultures can be maintained simultaneously in a single system, which could speed up the research on restistance of bacteria to antibiotics. We could safely say that without chemical flask there would be no chemistry at all. It has been since years, however, the chemists' dream to be able to downscale to the microscale the operations that are easily performed with large quantities of chemicals inside flasks, including refilling, mixing, pouring out. The first microfluidic system capable of performing all the typical operations with chemicals inside miniscule droplets has been presented just now. The device, fabricated by a group of researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS), headed by Dr Piotr Garstecki, allow for performing strictly controlled chemical reactions and cultivation of bacterial colonies inside multiple microdroplets at a time.

The research paper reporting a system for cultivation of bacteria have just been published in one of the most prestigious chemical journals, “Angewandte Chemie International Edition”. Microfluidic systems are fabricated from polymer plates with sizes resembling a credit card or less. Inside the systems, a carrier fluid (mostly oil) carrying microdroplets containing chemicals flows laminarly through tiny channels of diameters in the range of tenths or hundredths of a milimeter. Using a single microfluidic system, up to a few dozen of thousands of different chemical reactions can be carried out during a day.

 Existing microfluidic systems featured a serious drawback: they did not allow to carry out and control long-lasting processes requiring to perform thousands of operations on each of hundreds of microdroplets. Due to this limitation, e.g., long-lasting cultivations of microorganisms were not possible. To provide bacteria with normal growth conditions, they must be supplied with nutrients, and metabolites must be removed from their environment on a regular basis. “Our microfluidic system allows to add to and to collect from each of hundreds of droplets circulating within the device a precisely measured amount of fluid”, says Dr Garstecki.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Biosensor Detects Molecules Linked to Cancer, Alzheimer's and Parkinson's
Novel biosensor has been proven capable of detecting molecules associated with neurodegenerative diseases and some types of cancer.
New Device Could Improve Cancer Detection
UBC researchers develop a microfluidic device to capture circulating tumor cells.
Gut Model HuMiX Works Like the Real Thing
Developed by scientists at the Luxembourg Centre for Systems Biology, the “Human Microbial Cross-talk” model is representative of the actual conditions and processes that occur within our intestines.
'Kidney on a Chip' Facilitates Safer Drug Dosing
University of Michigan researchers have used a "kidney on a chip" device to mimic the flow of medication through human kidneys and measure its effect on kidney cells.
AACR 2016: Cancer Immunotherapy and Beyond
At this year's meeting there was a palpable buzz around subjects ranging from microbiomics to the tumor microenvironment and cancer vaccines, big data to in vitro and in vivo modeling and drug delivery (to name just a few).
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Lab-on-a-Chip for Detecting Glucose
By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Soy Shows Promise as Natural Anti-Microbial Agent
Researchers from University of Guelph show that soy isoflavones and peptides could be used to reduce microbial contamination of food.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!