Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Advance the Art of Drug Testing

Published: Friday, September 06, 2013
Last Updated: Friday, September 06, 2013
Bookmark and Share
On a rectangular chip slightly smaller than a person’s finger, two scientists and an engineer are writing what they hope will be the blueprint for the future of drug testing.

The researchers are studying the behaviors of cells to learn more about how cells send signals to each other. How are cells affected by the flow of blood? And how can they be studied outside the body?

The problem that the group hopes to solve is a challenge that confronts many cancer patients: How can drugs be made to kill cancerous cells without harming healthy cells and tissue nearby?

The researchers represent three disciplines. Yaling Liu, assistant professor of mechanical engineering and mechanics, studies the interfacial phenomena that occur at the micro- and nanoscale of biological systems.

Linda Lowe-Krentz, professor of biological sciences, is a cell biologist who studies blood vessels and the changes that cells undergo in response to blood flow.

And Daniel Ou-Yang, professor of physics, has developed novel methods of using microscopy and lasers, including “optical tweezers,” to study the activities of cells at the nanoscale.

The researchers and their students are developing a method of testing cancer drugs on a chip etched with channels that mimic the branching capillaries of the human lung and are coated with human endothelial, or blood vessel, cells.

In addition to learning how to target drugs selectively at cancerous cells, they hope to reduce the cost of drug tests as well as the time it takes to run them.

The project has been supported for more than a year through Lehigh’s Biosystems Dynamics Summer Institute, which is funded by the Howard Hughes Medical Institute. The group recently received a three-year grant from the National Institutes of Health.

An alternative to invasive therapies

Current cancer treatments, says Liu, can be extremely invasive. Most chemotherapies, for example, disperse an anti-cancer drug into the bloodstream, where it destroys both cancerous and noncancerous tissue and cells.

Standard drug-testing methods also have shortcomings, says Lowe-Krentz. Some tests are done in the static environment of cells and cultures, which don’t mimic the behavior of the entire organism. Others are performed on animals: this is expensive and the results can be unreliable because a drug’s effect on an animal is different from its effect on a human.

By conducting tests on a chip, says Liu, researchers can approximate the environment a drug encounters inside the human body and track its fate in that environment. Chips are cheap—each costs less than a dollar to make, and multiple tests can be run simultaneously on a series of chips. Size is another advantage. In a test, the small chip uses only about a tenth of the amount of drug and tissue required by more conventional testing methods.

“The chip enables us to grow our own human cells and observe a drug’s effect on them in their natural environment,” says Liu. “This will make it possible to do screenings much more quickly and shorten the research cycle.”

Liu and his students have begun fabricating rectangular chips from a polymeric material that is used as a sealant in solar paneling. Using computer-aided design, they will etch the chips with a pattern that resembles the lung’s bifurcating geometry, with channels ranging in width from arteries (about 1 centimeter) to the tiniest capillaries (10 microns).

The team will also engineer the chip so that it stretches like the breathing lung. A computer-controlled syringe will control the rate at which the drug is pumped into the chip coating. This flow rate affects cell health and cell signaling.

Taken together, says Liu, the design, the elastic chip material and the syringe enable the chip to achieve a credible imitation of human breathing and blood flow patterns.

“This will give us a result that is closer to actual clinical studies,” he says.

“Tricking” cells into a desired behavior

The next challenge is to coax human endothelial cells (which line the interior surface of blood and lymphatic vessels) to adhere to, and grow on, the channels of the chip.

“Growing cells has been called both a science and an art,” says Lowe-Krentz. “As blood vessels develop, a single cell moves out and is followed by other cells. If too many cells follow, they can clog the new branches; if not enough follow, the cells don’t cover the surface of the channel.”

Liu’s and Lowe-Krentz’s graduate and undergraduate students tackled this task through Lehigh’s Biosystems Dynamics Summer Institute.

“We’ve had to trick the cells to behave like we want them to and still have normal characteristics,” says Lowe-Krentz.
 
When the chip is coated with endothelial cells, the researchers will treat the cells with a chemical that inflames the cells similar to the way cancer does. They will then inject the device with a blood solution containing nanoparticles hitched with a drug, an antibody and a fluorescent marker.

The antibody, a type of protein, will act as targeting agent by causing the nanoparticle to bind only to those cells that express the kind of receptor, or marker, that cancer cells express. When binding occurs, the particles will release the drugs they are carrying.

Tracking countless tiny movements

The fluorescent marker will enable the researchers, using scanning laser confocal microscopy, to observe and track the nanoparticles and their interactions with cells. The imaging technique, says Ou-Yang, uses optics, lasers and the computer to obtain a 3-D picture of the entire specimen, from top to bottom.

“Confocal microscopy works almost like an MRI,” says Ou-Yang. “We scan a plane and illuminate each point of interest, point by point, and then advance to the next sheet and repeat the process. The computer then regenerates these images into a 3-D composite.

“We can measure the distribution of nanoparticles in the microfluidic channels of the chip. Because the particles are moving, we do a time average of their motions in the channel to see where the particles are going and where they are attaching.”

Confocal microscopy will also enable the group to quantify the percentage of the nanoparticles that bind to the cancer-like cells and thus measure the particles’ success in finding their targets. The team will also be able to correlate binding effectiveness with size by coating particles of various sizes with different fluorescent markers.

In the future, says Liu, the researchers hope to coat the chip with multiple layers of cells with a porous membrane. This will enable them to study how cancer cells metastasize and migrate across blood vessels.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A Biomimetic “Bridge” to Precision Medicine
Technique uses antibody-coated nanoparticles as imaging probes to watch cell-to-cell interactions under micro-fluid conditions.
Thursday, March 31, 2016
Scientific News
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
Peer Review is in Crisis, But Should be Fixed, Not Abolished
After the time to get the science done, peer review has become the slowest step in the process of sharing studies, and some scientists have had enough.
Making Every Cell Matter
New method for encapsulating single cells within microgels could boost efficacy of cell-based therapies and tissue engineering.
Modelling Cigarette Effects with Airway-on-a-Chip
An instrument that smokes cigarettes like a human, and delivers whole smoke to the air space of microfluidic human airway chips, enables new insights into how non-smokers and COPD patients respond to smoke.
Robotic Cleaning Technique Could Automate Neuroscience Research
New robotic cleaning technique allows pipettes used in patch-clamping to be re-used up to 11 or more times.
Lab-on-a-Chip to Help Detect Cancer
In this podcast, we speak to Gustavo Stolovitsky to learn about his career and the work he is doing at IBM Research.
First Entirely 3D-printed Organ-on-a-Chip with Integrated Sensors
New approach to manufacturing may allow researchers to rapidly design organs-on-chips that match the properties of a specific disease or individual patient's cells.
3D-Printing in Science: Conference Co-Staged with LABVOLUTION
LABVOLUTION 2017 will have an added highlight of a simultaneous conference, "3D-Printing in Science".
Size Matters for Particles in Bloodstream
Research uncovers more information about how particles behave in the human bloodstream.
Lab-on-a-Chip Detects Effects of Poison
A fast and efficient mixer has been developed for testing the effect of toxic substances faster by using a new lab-on-a-chip.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!