Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
Become a Member | Sign in
Home>News>This Article

MicroAqua: A 12 Party Consortium Drives the Development of a Microarray

Published: Monday, September 09, 2013
Last Updated: Monday, September 09, 2013
Bookmark and Share
Scienion technology used for multiparameter testing to enable biohazard detection in water.

Scienion AG has announced milestone advancements in the EU MicroAqua research project, which is dedicated to developing a universal microarray for the evaluation of fresh-water quality.

The prototype of the unique chip enables the simultaneous detection of almost 40 waterborne microbial pathogens and 10 diatom algal species serving as bioindicators of water quality.

The DNA microarray is presently subject to optimization and evaluation using water sample from various national monitoring sites in Europe. Scienion intends to market the final products.

µAQUA is the acronym for the EU research project “Universal microarrays for the evaluation of fresh-water quality based on detection of pathogens and their toxins” which has been funded by the 7th Framework Programme of the European Commission since 2011.

Its overall goal is to develop efficient, sensitive, robust, rapid and inexpensive aquatic biosensors to monitor various aspects of water quality as part of the strategy for control and prevention of diseases caused by waterborne pathogens and algal toxins.

μAQUA aims to design and develop a universal microarray chip for the high-throughput detection in water of known and emerging pathogens (bacteria, viruses, protozoa and cyanobacteria) and to assess the water quality by monitoring the presence of select bioindicators (diatoms).

The present chip prototype allows for simultaneous testing of almost 50 organisms. These organisms include pathogens that are considered to be potentially most dangerous for human health and represent the standard pathogens whose presence is tested by all national water authorities in Europe.

Additionally the chip can detect several diatom algal species that are known to react rapidly and sensitively to water quality changes and are used universally as biomarkers for water quality assessment.

12 partners from eight countries are committed to the project, with Claudio Gualerzi from the University of Camerino, Italy, being the coordinator of this ambitious enterprise.

The original EU application was significantly driven by Linda Medlin from the Observatoire Océanologique de Banyuls Sur Mer, a pioneer in using PCR for phylogenetic analysis.

Scienion plays a key role in this project. The company has been developing the actual microarrays and provides the infrastructure and expertise for the production of the arrays and their analysis.

Whereas capture probe design was performed by other partners, Scienion has been involved in their adaption and microarray specificity testing.

The DNA microchip contains an array of oligonucleotides immobilized on Scienion’s sciCHIP EPOXY glass slides. At Scienion’s site in Berlin, the complete workflow of the microarrays analysis has been performed and includes fluorescent labeling of the target nucleic acids, hybridization to the DNA chip, detection and data evaluation.

Scienion has also headed the development work of suitable buffer systems for sample printing, optimization of DNA concentrations and immobilization conditions.

At present, the universal microchip is subject to validation using a range of environmental samples collected throughout Europe by various partners.

For more information see

Dr. Holger Eickhoff, CEO of Scienion AG, states: “Surface water is a vitally important resource and we need reliable and affordable tools to monitor its quality, especially for the detection of potential health hazards caused by waterborne pathogens. However, traditional methods currently used for monitoring water quality and to detect potential biohazards present several limitations: 1. highly qualified workforce skilled in microbiology, virology and taxonomy is required. 2. current methods are not able to yield rapid information and 3. there are no tools that allow an integrated monitoring and evaluation of all different biological parameters. We are very pleased to contribute to the success of the MicroAqua project, which utilizes modern microarray technology in an interdisciplinary approach to overcome these limitations. Our universal microarray chip can greatly enhance speed and accuracy by which species and biomolecules can be identified. Ultimately, the results of this project will allow not only the early detection of health hazards. In addition they will also contribute to evaluate the effectiveness of possible measures taken, and to the formulation of knowledge-based proposals for actions capable of mitigating health threats posed by waterborne pathogenic and toxigenic organisms. Our goal is the production of commercial universal chips for the detection of target organisms and toxins to be adopted by European water authorities and by the water production industry.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genalyte Teams with Scienion to Provide sciFLEXARRAYER Dispensers
Scienion’s automated liquid handling dispenser complements the simplicity, speed and flexibility of the Maverick multiplexed system.
Thursday, September 20, 2012
Scientific News
Discovery Provides New Opportunities for Chips
Scientists at the University of Twente's MESA+ research institute have developed a new manufacturing method to create three-dimensional nanostructures.
Penn Engineering Team Showcases ‘Eye-on-a-Chip’ Technology
These small plastic chips contain microfluidic channels, carefully designed so that human cells can grow in them in a way that simulates the three-dimensional environments they would normally inhabit in the body.
Miniaturizable Magnetic Resonance
Microscopic gem the key to new development in magnetic lab-on-a-chip technology.
Education and Expense: The Barriers to Mass Spectrometry in Clinical Laboratories?
Here we examine the perceived barriers to mass spec in clinical laboratories and explore the possible drivers behind the recent shift in uptake of the technology in clinical settings.
Chip-Based Technology Enables Reliable Direct Detection of Ebola Virus
Hybrid device integrates a microfluidic chip for sample preparation and an optofluidic chip for optical detection of individual molecules of viral RNA.
Stem Cell Research Hints at Evolution of Human Brain
Researchers at UC San Francisco have succeeded in mapping the genetic signature of a unique group of stem cells in the human brain that seem to generate most of the neurons in our massive cerebral cortex.
Developing a Breathalyzer-Type Low Blood Sugar Warning Device For Diabetes
A multidisciplinary team of researchers at Indiana University-Purdue University Indianapolis has been awarded a $738,000 National Science Foundation grant to develop a breathalyzer-type device to detect the onset of hypoglycemia, or low blood sugar episodes, in people with diabetes.
Smartphone App to Monitor Serious Blood Disorder
A researcher from Florida Atlantic University has come up with a unique way to monitor sickle cell disease -- a serious blood disorder -- using a smart phone.
Preventing Crystallization to Improve Drug Efficiency
Esther Amstad and an international team of researchers have developed a method to increase the solubility of poorly soluble substances, such as many of the newly developed drugs.
‘Lab-on-a-Chip’ Technology Cuts Costs of Lab Tests
With ability to analyze minuscule amounts of fluid, Rutgers breakthrough could also promote central nervous system and joint research.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos