Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Method Developed at UT Arlington Allows Quantitative Nanoscopic Imaging Through Silicon

Published: Monday, October 07, 2013
Last Updated: Monday, October 07, 2013
Bookmark and Share
A team of scientists has figured out how to quantitatively observe cellular processes taking place on so-called “lab on a chip” devices in a silicon environment.

The new technology will be useful in drug development as well as disease diagnosis, researchers say.

In a paper published in Nature’s online journal Scientific Reports, the team said it overcame past limitations on quantitative microscopy through an opaque media by working with a new combination of near infrared light and a technique called quantitative phase imaging. Quantitative phase imaging is about a decade old. It uses shifts in phases of light, not staining techniques, to aid specimen imaging – earning the term “label-free.”

 “To the best of our knowledge, this is the first demonstration of quantitative phase imaging of cellular structure and function in silicon environment,” said Assistant Professor of Physics Samarendra Mohanty, head of the Biophysics and Physiology Laboratory at UT Arlington and corresponding author on the paper.

The UT Arlington/MIT team was able to prove success in analyzing specimens through a silicon wafer in two instances. In one, they accomplished full-field imaging of the features of red blood cells to nanometer thickness accuracy. In another, they observed dynamic variation of human embryonic kidney cells in response to change in salt concentration. Mohanty believes that his group’s current work on near infrared quantitative phase imaging can lead to non-invasive, label-free monitoring of neuronal activities.

Additional co-authors include: Bipin Joshi and Nelson Cardenas, of UT Arlington; and Ishan Barman, Narahara Chari Dingari, Jaqueline S. Soares and Ramachandra R. Dasari, all of MIT.

“Silicon-based micro devices known as labs-on-a-chip are revolutionizing high throughput analysis of cells and molecules for disease diagnosis and screening of drug effects. However, very little progress has been made in the optical characterization of samples in these systems,” said Joshi, a recent graduate and lead author on the paper.  “The technology we’ve developed is well-suited to meet this need.”

Barman, now an assistant professor at Johns Hopkins University, said the new paper is a prime example of the type of research he hopes to do - projects pulled by needs of the biomedical community and continually pushing the edge of biophotonic solutions.

 “We envision that this significantly expands the visualization possible in silicon based microelectronic and micromechanical devices,” he said.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

How Fluid Flow Influences Neuron Growth
A University of Texas at Arlington team exploring how neuron growth can be controlled in the lab and, possibly, in the human body has published a new paper in Nature Scientific Reports on how fluid flow could play a significant role.
Wednesday, October 08, 2014
Scientific News
Toxicity Testing With Cultured Liver Cells
Microreactor replaces animal testing.
Study Validates Analysis of Copy Number Variation in Miniaturized Reaction Volumes
Data shows that accurate and reproducible CNV results can be produced with IntelliQube using the Array Tape® consumable.
Organs on Chips
Combining 3D cell culture with microfluidics, organs-on-chips could revolutionize toxicology testing for pharmaceuticals, foods, cosmetics, pesticides, and industrial chemicals.
Finding the Needle in a Microbial Haystack
After developing a novel investigational technology called PathoChip that can rapidly identify elusive microorganisms, a team of Penn Medicine researchers recently succeeded for the first time in identifying a pathogen in a patient sample, demonstrating the proof of principle that this technology can be used to identify pathogens in human disease.
Organ-on-a-Chip
In a step toward personalized drug testing, researchers coax human stem cells to form complex tissues.
Diagnosing Cancer from a Single Drop of Blood
What if a physician could effectively diagnose cancer from one drop of a patient’s blood?
Study Reveals Shared Behavior of Microbes And Electrons
Bacteria streaming through a lattice behave like electrons in a magnetic material.
Study Reveals Shared Behavior of Microbes and Electrons
Bacteria streaming through a lattice behave like electrons in a magnetic material.
Detecting When and Why Deadly Blood Clots Form
New bioinspired blood coagulation assay is more sensitive than existing assays and could one day be used to diagnose rare bleeding disorders and prevent toxic effects of anticoagulant and antiplatelet drugs.
Tracing a Cellular Family Tree
New technique allows tracking of gene expression over generations of cells as they specialize.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!