Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cellectricon Launches New Module for Physiological Ion Channel Research

Published: Tuesday, November 12, 2013
Last Updated: Tuesday, November 12, 2013
Bookmark and Share
Dynaflow® Resolve Temperature Control combines controlled solution exchange with precise temperature regulation.

Cellectricon has launched the Dynaflow® Resolve Temperature Control system at Neuroscience 2013 (San Diego), booth #933.

Cellectricon’s Dynaflow Resolve automated perfusion system uses microfluidics for rapid and efficient solution exchange experiments, enabling the measurement of ion channel current regardless of cell type or compound.

The new Temperature Control add-on module has been specifically developed to enable high performance patch clamp experiments at physiological temperatures, from room temperature up to 45 °C.

Temperature control during ion channel research is particularly important when investigating ion channel kinetics and toxicity screening applications, and now Cellectricon’s Dynaflow Resolve Temperature Control ensures patch clamp experiments can be performed with unsurpassed speed, control and flexibility at these elevated temperatures for true physiological insight.

Developed in response to customer demand, the Dynaflow Resolve Temperature Control guarantees precise, definable temperature control and complete stability, even for hour-long experiments.

Without any risk of temperature fluctuations following solution switch, scientists can be assured of reliable, reproducible results in constant physiological conditions.

Cellectricon will be launching the add-on at Neuroscience 2013, booth #933, and invites interested researchers and scientists to drop by the booth with any questions.

At the event, Cellectricon will also present a poster detailing the technology and application of the Dynaflow Resolve system for fast activating ion channels.

The poster presentation entitled ‘A method for patch-clamp recordings of fast-acting ion channels in rat dorsal root ganglion cells’ takes place at 11-12pm, Tuesday 12th November.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Lab-on-a-Chip for Detecting Glucose
By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Soy Shows Promise as Natural Anti-Microbial Agent
Researchers from University of Guelph show that soy isoflavones and peptides could be used to reduce microbial contamination of food.
Parsortix Demonstrates Benefits Over Marker-Based Systems
Research published online in the International Journal of Cancer, shows the ParsortixTM System efficiently captures and harvests intact, viable circulating tumour cells (CTCs), including EpCAM-negative CTCs, to allow for broader downstream CTC analysis.
Experimental Therapy For Brain Cancer Could Prevent Drug Resistance
Information from penny-sized microfluidic chips allowed researchers to anticipate resistance to cancer treatment.
3D Printing of Lego Fluidics
Study shows how 3D printing can open up microfluidic technology to a wider audience.
New Method to Preserve Device to Monitor HIV Treatment
Inspired by pregnancy tests, scientists have developed a method to store microfluidic devices for months without refrigeration, giving developing countries an inexpensive and reliable way to treat patients.
Migration Creates Cancer Cell Vulnerabilities
Scientists found that migration can damage cancer cells’ nuclei and DNA, requiring repairs for their survival. The results may open new avenues for targeting metastatic cancer.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!