Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
Become a Member | Sign in
Home>News>This Article

New Clues to How Bacteria Evade Antibiotics

Published: Friday, January 10, 2014
Last Updated: Friday, January 10, 2014
Bookmark and Share
Scientists have made an important advance in understanding how a subset of bacterial cells escape being killed by many antibiotics.

Cells become "persisters" by entering a state in which they stop replicating and are able to tolerate antibiotics. Unlike antibiotic resistance, which arises because of genetic mutations and is passed on to later generations, this tolerant phase is only temporary, but it may contribute to the later development of resistance.

In a new study in the journal Science, researchers from the MRC Centre for Molecular Bacteriology and Infection at Imperial College London have succeeded in visualising persister cells in infected tissues for the first time, and have identified signals that lead to their formation.

Virtually all bacterial species form subpopulations of persisters that are tolerant to many antibiotics. Persisters are likely to be a cause of many recurrent infections, but little is known about how they arise.

The team developed a method for tracking single cells using a fluorescent protein produced by the bacteria. They showed that Salmonella, which causes gastroenteritis and typhoid fever, forms large numbers of non-replicating persisters after being engulfed by immune cells called macrophages. By adopting this non-replicating mode, Salmonella survives antibiotic treatment and lingers in the host, accounting for its ability to cause recurrent infections.

The researchers also identified factors produced by human cells that trigger bacteria to become persisters.

One of the lead authors, Dr Sophie Helaine, said: "We rely on antibiotics to defend us against common bacterial infections like tuberculosis, cystitis, tonsillitis and typhoid, but a few cells can escape treatment by becoming persisters, which allows the infection to come back. This is a big problem in itself, but it also makes it more likely that antibiotic resistance will arise and spread.

"Now we know the molecular pathways and mechanisms that lead to persister formation during infection, we can work on screening for new drugs to coax them out of this state so that they become vulnerable to antibiotics." 

The other lead author, Professor David Holden, Director of the MRC Centre for Molecular Bacteriology and Infection at Imperial College London, said: "One of the most striking findings in this work is that conditions inside immune cells activate two different responses from Salmonella, causing some bacteria to replicate and others to enter a non-replicating persister state. Activating these two responses together is likely to be an important mechanism by which Salmonella survives during infection." 

The research was supported by an Imperial College London Junior Research Fellowship, the Wellcome Trust and the Medical Research Council.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Digital 'Plaster' for Monitoring Vital Signs Undergoes First Clinical Trials
ICL researchers are trying out a wireless digital ‘plaster’ that can monitor vital signs continuously and remotely in patients and healthy volunteers.
Thursday, November 05, 2009
On-the-spot DNA Analysis to Test Tolerance to Prescription Drugs Gets Closer
A handheld device to predict whether patients will respond adversely to medication is one step closer to the market.
Tuesday, February 17, 2009
Scientists Close in on Genes Responsible for Parkinson’s Disease
Findings could help doctors predict the likelihood of the disease developing, and provide targets for new treatments.
Monday, December 19, 2005
Scientific News
Discovery Provides New Opportunities for Chips
Scientists at the University of Twente's MESA+ research institute have developed a new manufacturing method to create three-dimensional nanostructures.
Penn Engineering Team Showcases ‘Eye-on-a-Chip’ Technology
These small plastic chips contain microfluidic channels, carefully designed so that human cells can grow in them in a way that simulates the three-dimensional environments they would normally inhabit in the body.
Miniaturizable Magnetic Resonance
Microscopic gem the key to new development in magnetic lab-on-a-chip technology.
Education and Expense: The Barriers to Mass Spectrometry in Clinical Laboratories?
Here we examine the perceived barriers to mass spec in clinical laboratories and explore the possible drivers behind the recent shift in uptake of the technology in clinical settings.
Chip-Based Technology Enables Reliable Direct Detection of Ebola Virus
Hybrid device integrates a microfluidic chip for sample preparation and an optofluidic chip for optical detection of individual molecules of viral RNA.
Stem Cell Research Hints at Evolution of Human Brain
Researchers at UC San Francisco have succeeded in mapping the genetic signature of a unique group of stem cells in the human brain that seem to generate most of the neurons in our massive cerebral cortex.
Developing a Breathalyzer-Type Low Blood Sugar Warning Device For Diabetes
A multidisciplinary team of researchers at Indiana University-Purdue University Indianapolis has been awarded a $738,000 National Science Foundation grant to develop a breathalyzer-type device to detect the onset of hypoglycemia, or low blood sugar episodes, in people with diabetes.
Smartphone App to Monitor Serious Blood Disorder
A researcher from Florida Atlantic University has come up with a unique way to monitor sickle cell disease -- a serious blood disorder -- using a smart phone.
Preventing Crystallization to Improve Drug Efficiency
Esther Amstad and an international team of researchers have developed a method to increase the solubility of poorly soluble substances, such as many of the newly developed drugs.
‘Lab-on-a-Chip’ Technology Cuts Costs of Lab Tests
With ability to analyze minuscule amounts of fluid, Rutgers breakthrough could also promote central nervous system and joint research.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos