Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Clues to How Bacteria Evade Antibiotics

Published: Friday, January 10, 2014
Last Updated: Friday, January 10, 2014
Bookmark and Share
Scientists have made an important advance in understanding how a subset of bacterial cells escape being killed by many antibiotics.

Cells become "persisters" by entering a state in which they stop replicating and are able to tolerate antibiotics. Unlike antibiotic resistance, which arises because of genetic mutations and is passed on to later generations, this tolerant phase is only temporary, but it may contribute to the later development of resistance.

In a new study in the journal Science, researchers from the MRC Centre for Molecular Bacteriology and Infection at Imperial College London have succeeded in visualising persister cells in infected tissues for the first time, and have identified signals that lead to their formation.

Virtually all bacterial species form subpopulations of persisters that are tolerant to many antibiotics. Persisters are likely to be a cause of many recurrent infections, but little is known about how they arise.

The team developed a method for tracking single cells using a fluorescent protein produced by the bacteria. They showed that Salmonella, which causes gastroenteritis and typhoid fever, forms large numbers of non-replicating persisters after being engulfed by immune cells called macrophages. By adopting this non-replicating mode, Salmonella survives antibiotic treatment and lingers in the host, accounting for its ability to cause recurrent infections.

The researchers also identified factors produced by human cells that trigger bacteria to become persisters.

One of the lead authors, Dr Sophie Helaine, said: "We rely on antibiotics to defend us against common bacterial infections like tuberculosis, cystitis, tonsillitis and typhoid, but a few cells can escape treatment by becoming persisters, which allows the infection to come back. This is a big problem in itself, but it also makes it more likely that antibiotic resistance will arise and spread.

"Now we know the molecular pathways and mechanisms that lead to persister formation during infection, we can work on screening for new drugs to coax them out of this state so that they become vulnerable to antibiotics." 

The other lead author, Professor David Holden, Director of the MRC Centre for Molecular Bacteriology and Infection at Imperial College London, said: "One of the most striking findings in this work is that conditions inside immune cells activate two different responses from Salmonella, causing some bacteria to replicate and others to enter a non-replicating persister state. Activating these two responses together is likely to be an important mechanism by which Salmonella survives during infection." 

The research was supported by an Imperial College London Junior Research Fellowship, the Wellcome Trust and the Medical Research Council.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Digital 'Plaster' for Monitoring Vital Signs Undergoes First Clinical Trials
ICL researchers are trying out a wireless digital ‘plaster’ that can monitor vital signs continuously and remotely in patients and healthy volunteers.
Thursday, November 05, 2009
On-the-spot DNA Analysis to Test Tolerance to Prescription Drugs Gets Closer
A handheld device to predict whether patients will respond adversely to medication is one step closer to the market.
Tuesday, February 17, 2009
Scientists Close in on Genes Responsible for Parkinson’s Disease
Findings could help doctors predict the likelihood of the disease developing, and provide targets for new treatments.
Monday, December 19, 2005
Scientific News
Toxicity Testing With Cultured Liver Cells
Microreactor replaces animal testing.
Study Validates Analysis of Copy Number Variation in Miniaturized Reaction Volumes
Data shows that accurate and reproducible CNV results can be produced with IntelliQube using the Array Tape® consumable.
Spotlight on Acoustic Liquid Handling
Journal of Laboratory Automation special issue highlights how acoustic liquid handling enables breakthrough innovations.
Organs on Chips
Combining 3D cell culture with microfluidics, organs-on-chips could revolutionize toxicology testing for pharmaceuticals, foods, cosmetics, pesticides, and industrial chemicals.
Finding the Needle in a Microbial Haystack
After developing a novel investigational technology called PathoChip that can rapidly identify elusive microorganisms, a team of Penn Medicine researchers recently succeeded for the first time in identifying a pathogen in a patient sample, demonstrating the proof of principle that this technology can be used to identify pathogens in human disease.
Organ-on-a-Chip
In a step toward personalized drug testing, researchers coax human stem cells to form complex tissues.
Diagnosing Cancer from a Single Drop of Blood
What if a physician could effectively diagnose cancer from one drop of a patient’s blood?
Study Reveals Shared Behavior of Microbes And Electrons
Bacteria streaming through a lattice behave like electrons in a magnetic material.
Study Reveals Shared Behavior of Microbes and Electrons
Bacteria streaming through a lattice behave like electrons in a magnetic material.
Detecting When and Why Deadly Blood Clots Form
New bioinspired blood coagulation assay is more sensitive than existing assays and could one day be used to diagnose rare bleeding disorders and prevent toxic effects of anticoagulant and antiplatelet drugs.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!