Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
Become a Member | Sign in
Home>News>This Article

Do you Want to Make the Move from Diagnostics to BiognostiX?

Published: Thursday, February 20, 2014
Last Updated: Thursday, February 20, 2014
Bookmark and Share
Symposium ‘Leading the way from diagnostics to BiognostiX’ to be held on 27 February 2014 in UK.

A symposium focusing on the results of a 3-year EU-funded programme to design a novel fibre-based microfluidic technology to enables rapid and simple point-of-use diagnostic testing will be held at the Hauser Forum, Cambridge, UK, on 27 February 2014.

The BiognostiX™ consortium, headed by experts at FFEI Life Science, has brought together academic, research and commercial partners from five European countries, and now the symposium ‘Leading the way from diagnostics to BiognostiX’, will feature presentations from each, accelerating the process of disseminating the proof of principle data generated as part of the project.

George Hutchinson, Director, FFEI Life Science, said, “We are at a very exciting stage in the development of the programme and we are keen to meet new partners who have a need for the BiognostiX technology. Rapid, low cost, multiplex diagnostic testing on this simple device is an appealing option for a wide range of applications, in veterinary, agri-food and human diagnostic, for example.”

The desired assay biochemistry, microfluidics and a novel particle technology platform are combined on a BiognostiX Chip™. Composed of a fibre-based substrate, each BiognostiX Chip is mechanically treated to create a microfluidic channel pattern.

Reagents are deposited using fluid-jet technologies to deliver picolitre quantities of capture complex - Immuno-Ink™ - into specific zones of the channels.

The simplicity and flexibility of the manufacturing process allows for changes in chip configuration during the assay development process.

The number of microfluidic channels can be varied depending on assay requirements and the residence time of the sample can be adjusted to control the interaction time between the sample and the Immuno-Ink.

The output of the immunoassays can be quantified using densiometric, colorimetric or fluorometric techniques. Once the biochemistry and chip are optimized, they are then fixed for simple, low-cost manufacture.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

BiognostiX Symposium Draws a Crowd to Hauser Forum
Company to share the results of this 3-year EU funded FP7 research programme.
Thursday, May 15, 2014
Scientific News
Discovery Provides New Opportunities for Chips
Scientists at the University of Twente's MESA+ research institute have developed a new manufacturing method to create three-dimensional nanostructures.
Penn Engineering Team Showcases ‘Eye-on-a-Chip’ Technology
These small plastic chips contain microfluidic channels, carefully designed so that human cells can grow in them in a way that simulates the three-dimensional environments they would normally inhabit in the body.
Miniaturizable Magnetic Resonance
Microscopic gem the key to new development in magnetic lab-on-a-chip technology.
Education and Expense: The Barriers to Mass Spectrometry in Clinical Laboratories?
Here we examine the perceived barriers to mass spec in clinical laboratories and explore the possible drivers behind the recent shift in uptake of the technology in clinical settings.
Chip-Based Technology Enables Reliable Direct Detection of Ebola Virus
Hybrid device integrates a microfluidic chip for sample preparation and an optofluidic chip for optical detection of individual molecules of viral RNA.
Stem Cell Research Hints at Evolution of Human Brain
Researchers at UC San Francisco have succeeded in mapping the genetic signature of a unique group of stem cells in the human brain that seem to generate most of the neurons in our massive cerebral cortex.
Developing a Breathalyzer-Type Low Blood Sugar Warning Device For Diabetes
A multidisciplinary team of researchers at Indiana University-Purdue University Indianapolis has been awarded a $738,000 National Science Foundation grant to develop a breathalyzer-type device to detect the onset of hypoglycemia, or low blood sugar episodes, in people with diabetes.
Smartphone App to Monitor Serious Blood Disorder
A researcher from Florida Atlantic University has come up with a unique way to monitor sickle cell disease -- a serious blood disorder -- using a smart phone.
Preventing Crystallization to Improve Drug Efficiency
Esther Amstad and an international team of researchers have developed a method to increase the solubility of poorly soluble substances, such as many of the newly developed drugs.
‘Lab-on-a-Chip’ Technology Cuts Costs of Lab Tests
With ability to analyze minuscule amounts of fluid, Rutgers breakthrough could also promote central nervous system and joint research.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos