Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Find that Going with the Flow Makes Bacteria Stick

Published: Tuesday, February 25, 2014
Last Updated: Monday, February 24, 2014
Bookmark and Share
In surprising new discovery, scientists show that microbes are more likely to adhere to tube walls when water is moving.

In a surprising new finding, researchers have discovered that bacterial movement is impeded in flowing water, enhancing the likelihood that the microbes will attach to surfaces. The new work could have implications for the study of marine ecosystems, and for our understanding of how infections take hold in medical devices.

The findings, the result of microscopic analysis of bacteria inside microfluidic devices, were made by MIT postdoc Roberto Rusconi, former MIT postdoc Jeffrey Guasto (now an assistant professor of mechanical engineering at Tufts University), and Roman Stocker, an associate professor of civil and environmental engineering at MIT. Their results are published in the journal Nature Physics.

The study, which combined experimental observations with mathematical modeling, showed that the flow of liquid can have two significant effects on microbes: “It quenches the ability of microbes to chase food,” Stocker says, “and it helps microbes find surfaces.”

That second finding could be particularly beneficial: Stocker says in some cases, that phenomenon could lead to new approaches to tuning flow rates to prevent fouling of surfaces by microbes - potentially averting everything from bacteria getting a toehold on medical equipment to biofilms causing drag on ship hulls.

The effect of flowing water on bacterial swimming was “a complete surprise,” Stocker says.

“My own earlier predictions of what would happen when microbes swim in flowing water had been: ‘Nothing too interesting,’” he adds. “It was only when Roberto and Jeff did the experiments that we found this very strong and robust phenomenon.”

Even though most microorganisms live in flowing liquid, most studies of their behavior ignore flow, Stocker explains. The new findings show, he says, that “any study of microbes suspended in a liquid should not ignore that the motion of that liquid could have important repercussions on the microbes.”

The novelty of this result owes partly to the divisions of academic specialties, and partly to advances in technology, Stocker says. “Microbiologists have rarely taken into account fluid flow as an ecological parameter, whereas physicists have just recently started to pay attention to microbes,” he says, adding: “The ability to directly watch microbes under the controlled flow conditions afforded by microfluidic technology - which is only about 15 years old - has made all the difference in allowing us to discover and understand this effect of flow on microbes.”

The team found that swimming bacteria cluster in the “high shear zones” in a flow - the regions where the speed of the fluid changes most abruptly. Such high shear zones occur in most types of flows, and in many bacterial habitats. One prominent location is near the walls of tubes, where the result is a strong enhancement of the bacteria’s tendency to adhere to those walls and form biofilms.

But this effect varies greatly depending on the speed of the flow, opening the possibility that the rate of biofilm formation can be tweaked by increasing or decreasing flow rates.

Guasto says the new understanding could help in the design of medical equipment to reduce such infections: Since the phenomenon peaks at particular rates of shear, he says, “Our results might suggest additional design criteria for biomedical devices, which should operate outside this range of shear rates, when possible - either faster or slower.”

“Biofilms are found everywhere,” Rusconi says, adding that the majority of bacteria spend significant fractions of their lives adhering to surfaces. “They cause major problems in industrial settings,” such as by clogging pipes or reducing the efficiency of heat exchangers. Their adherence is also a major health issue: Bacteria concentrated in biofilms are up to 1,000 times more resistant to antibiotics than those suspended in liquid.

The concentration of microbes in the shear zones is an effect that only happens with those that can control their movements. Nonliving particles of similar size and shape show no such effect, the team found, nor do nonmotile bacteria that are swept along passively by the water. “Without motility, bacteria are distributed everywhere and there is no preferential accumulation,” Rusconi says.

The new findings could also be important for studies of microbial marine ecosystems, by affecting how bacteria move in search of nutrients when one accounts for the ubiquitous currents and turbulence, Stocker says. Though they only studied two types of bacteria, the researchers predict in their paper that “this phenomenon should apply very broadly to many different motile microbes.”

In fact, the phenomenon has no inherent size limit, and could apply to a wide range of organisms, Guasto says. “There’s really nothing special about bacteria compared to many other swimming cells in this respect,” he says. “This phenomenon could easily apply to a wide range of plankton and sperm cells as well.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Freshly Squeezed Vaccines
Microfluidic cell-squeezing device opens new possibilities for cell-based vaccines.
Saturday, May 23, 2015
Faster, Smaller, More Informative
Device can measure the distribution of tiny particles as they flow through a microfluidic channel.
Thursday, May 14, 2015
Using Sound Waves To Detect Rare Cancer Cells
Acoustic device can rapidly isolate circulating tumor cells from patient blood samples.
Tuesday, April 07, 2015
Mechanically Stimulating Stem Cells
MIT biological engineering graduate student Frances Liu is studying ways to alter mechanical properties of cell environments to produce desired chemical outputs.
Tuesday, March 24, 2015
New Way To Model Sickle Cell Behavior
Microfluidic device allows researchers to predict behavior of patients’ blood cells.
Wednesday, January 21, 2015
Watching How Cells Interact
New device allows scientists to glimpse communication between immune cells.
Thursday, January 15, 2015
A Microchip for Metastasis
MIT researchers design a microfluidic platform to see how cancer cells invade specific organs.
Thursday, February 06, 2014
Self-Steering Particles Go with the Flow
Asymmetrical particles could make lab-on-a-chip diagnostic devices more efficient and portable.
Monday, November 18, 2013
Microfluidic Platform Gives a Clear Look at a Crucial Step in Cancer Metastasis
A microfluidic platform provides a high-resolution view of a crucial step in cancer metastasis.
Friday, September 27, 2013
Watching Tumors Burst Through a Blood Vessel
A microfluidic platform provides a high-resolution view of a crucial step in cancer metastasis.
Tuesday, September 24, 2013
Detecting DNA in space
Researchers, in a step toward analyzing Mars for signs of life, find that gene-sequencing chip can survive space radiation.
Tuesday, July 09, 2013
Device Finds Stray Cancer Cells in Patients’ Blood
A microfluidic device that captures circulating tumor cells could give doctors a noninvasive way to diagnose and track cancers.
Wednesday, April 10, 2013
Watching Fluid Flow at Nanometer Scales
Researchers find that tiny nanowires can lift liquids as effectively as tubes.
Tuesday, April 02, 2013
Putting the Squeeze on Cells
By deforming cells, researchers can deliver RNA, proteins and nanoparticles for many applications.
Wednesday, January 23, 2013
Tiny Tools Help Advance Medical Discoveries
MIT researchers are designing tools to analyze cells at the microscale.
Tuesday, January 08, 2013
Scientific News
Futuristic Brain Probe Allows for Wireless Control of Neurons
NIH-funded scientists developed an ultra-thin, minimally invasive device for controlling brain cells with drugs and light.
Microfluidic Device Mixes And Matches DNA For Synthetic Biology
Researchers have developed a microfluidic device that quickly builds packages of DNA and delivers them into bacteria or yeast for further testing.
Artificial Pancreas Controls Diabetes
Scientists are reporting the development of an implantable “artificial pancreas” that continuously measures a person’s blood sugar, or glucose, level and can automatically release insulin as needed.
Major Step for Implantable Drug-Delivery Device
MIT spinout signs deal to commercialize microchips that release therapeutics inside the body.
Smart Insulin Patch Could Replace Painful Injections for Diabetes
A joint effort between diabetes doctors and biomedical engineers could revolutionize how people with diabetes keep their blood sugar levels in check.
The Secrets of Secretion
Researchers have hacked nature's blueprints to create a new technology that could have broad-reaching impact on drug delivery systems and self-healing and anti-fouling materials.
New Tool on Horizon for Surgeons Treating Cancer Patients
Surgeons could know while their patients are still on the operating table if a tissue is cancerous, according to researchers.
Heartbeat on a Chip Could Improve Pharmaceutical Tests
A gravity-powered chip that can mimic a human heartbeat outside the body could advance pharmaceutical testing and open new possibilities in cell culture because it can mimic fundamental physical rhythms.
Unravelling the Mysteries of Carbonic Acid
Researchers have shown how gaseous carbon dioxide molecules are solvated by water to initiate the proton transfer chemistry that produces carbonic acid and bicarbonate.
Injectable Device Delivers Nano-View of the Brain
A team of researchers has developed a method of fabricating nanoscale electronic scaffolds that can be injected via syringe.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!