Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Eveon, Leti Mark Milestone in Fabrication of Smart Bolus-type Micro-pump

Published: Friday, March 14, 2014
Last Updated: Friday, March 14, 2014
Bookmark and Share
Both Companies announces the demonstration of liquid-pumping for smart drug delivery.

Eveon and CEA-Leti have announced the demonstration of liquid-pumping for smart drug delivery in the bolus mode using a silicon-based micro-pump fabricated with a standard MEMS process.

The milestone is the first functional micro-pump integration using MEMS standard process on Leti’s 200mm line. It is a result of FluMin3, Eveon and Leti’s three-year joint-development project to produce an automatic drug-delivery system integrating a MEMS micro-pump that reduces patient discomfort by delivering medicine with very high accuracy, minimal loss and high flow rates.

FluMin3 is a major R&D program supported by the Rhone-Alpes competitive cluster MINALOGIC in collaboration with CEDRAT TECHNOLOGIES and IMEP-LAHC, the Institute of Microelectronics Electromagnetism and Photonics, and Microwave and Characterization Laboratory.

The micro-pump is based on core technology initiated by Eveon and IMEP-LAHC. The pump demonstrator is made from silicon wafers, which include a thin deformable membrane sealed over a fluidic cavity and fluidic valves determining inlet and outlet. A dedicated electromagnetic actuator developed by CEDRAT TECHNOLOGIES shapes the membrane.

First fluidic characterization of this device showed very promising pumping results with typical water-flow rates of 12 ml/min without any counter-pressure, and up to six ml/min under 1 bar counter-pressure.

These results surpass the performance of commercial micro-pumps whose typical water-flow rate capacity is six ml/min without any counter-pressure and two ml/min under 0.5 bar counter-pressure.

These encouraging results already match bolus-mode injection requirements. In addition, new designs under development by Eveon and Leti are expected to improve fluidic performances.

At the same time, MEMS flow sensors designed to be finally integrated in the micro-pump have been fabricated and used to achieve an accurate liquid dosing using micro-diaphragm pumps with a dosing error below 5 percent for different counter-pressures.

Eveon, which coordinated this project, and Leti are continuing their work to stabilize relevant MEMS processes before industrialization and to integrate MEMS sensors inside the micro-pump to demonstrate an automatically controlled smart drug-delivery device.

More technical detailed concerning the architecture, the process of fabrication and performances of this new micro-pump should be published and presented in coming conferences.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Leti Announces MEMS Research Collaboration with OMRON
Leti’s first collaboration with a Japanese MEMS producer.
Monday, December 09, 2013
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Biosensor Detects Molecules Linked to Cancer, Alzheimer's and Parkinson's
Novel biosensor has been proven capable of detecting molecules associated with neurodegenerative diseases and some types of cancer.
New Device Could Improve Cancer Detection
UBC researchers develop a microfluidic device to capture circulating tumor cells.
Gut Model HuMiX Works Like the Real Thing
Developed by scientists at the Luxembourg Centre for Systems Biology, the “Human Microbial Cross-talk” model is representative of the actual conditions and processes that occur within our intestines.
'Kidney on a Chip' Facilitates Safer Drug Dosing
University of Michigan researchers have used a "kidney on a chip" device to mimic the flow of medication through human kidneys and measure its effect on kidney cells.
AACR 2016: Cancer Immunotherapy and Beyond
At this year's meeting there was a palpable buzz around subjects ranging from microbiomics to the tumor microenvironment and cancer vaccines, big data to in vitro and in vivo modeling and drug delivery (to name just a few).
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Lab-on-a-Chip for Detecting Glucose
By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Soy Shows Promise as Natural Anti-Microbial Agent
Researchers from University of Guelph show that soy isoflavones and peptides could be used to reduce microbial contamination of food.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!