Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

SIMTech Signs Three Microfluidic Collaboration Agreements

Published: Friday, April 04, 2014
Last Updated: Friday, April 04, 2014
Bookmark and Share
Agreements will play a part in speeding up the growth and development of the microfluidics industry.

The Singapore Institute of Manufacturing Technology (SIMTech) signed agreements with the following companies:

• InziGn Pte Ltd, a contract manufacturer specialising in precision mould making, plastics injection moulding and assembly of disposable medical devices;

• Austrianova, a Singapore-based high tech, life science and biotech company which will encapsulate living cells in bio-inert polymers using their proprietary “Cell-in-a-Box®”; and

• QuantuMDx Group, a UK-based diagnostic company with operations in Singapore.

The three companies are partnering SIMTech in the transfer, licensing and research collaboration in microfluidics technology respectively. These partnerships will allow for cost effective and novel solutions to be made available to industry, and the development of commercially unavailable microfluidic devices.

The global microfluidics market is witnessing significant growth, due to the rising awareness of microfluidics products and the growing investments in this market. The polymer- based microfluidics device market is valued at an estimated US$1.08 billion in 2013 and is expected to reach US$2.7 billion by 2018, at a Compounded Annual Growth Rate of 20.3 percent. [1]

SIMTech will transfer a complete set of microfluidics manufacturing technology to InziGn for mass production of microfluidics devices. Through this partnership, InziGn will benefit from an enhancement to its manufacturing capabilities and will be able to expand into mass production of complex diagnostic devices. SIMTech’s Microfluidics Foundry – primarily a microfluidics research foundry− will continue to provide design, prototyping and pilot production services to industry and academia to speed up the development of microfluidic products, while InziGn will provide high quality mass production services.

A licence has also been signed between Exploit Technologies Pte Ltd (ETPL), the technology transfer arm of A*STAR, and Austrianova to use SIMTech’s microfluidics-based single phase droplet generation technology for living encapsulated cells. The disposable microbead generation device (pictured below) yields high throughput and contamination-free micro-encapsule formation of cells, enzymes or drugs. The microfluidic dispensing head, which is the droplet generator, is made of disposable polymer chip. As it is disposable, sterilisation is not required. Hence, the downtime of the encapsulated cell manufacturing line is reduced.

The research collaboration agreement with QuantuMDx Group is for the development of a portable Point-Of-Care (POC) assay cassette for its Molecular Diagnostics (MDx) platform, suitable for 'in-field' use in resource-limited settings or countries, such as Africa. Such a device is not available commercially at the moment. The single-use disposable cassette is the key part of a handheld multiplex MDx device for analysing whole blood for DNA mutation testing or for infectious disease testing. The low-cost cassette includes microfluidics handling of samples, on-chip sample preparation, polymerase chain reaction, and detection modules.

Dr Lim Ser Yong, Executive Director, SIMTech, said: “Through various collaborative platforms, the SIMTech Microfluidics Foundry nurtures and grows the microfluidics industry by supporting the business and research community in the development of microfluidic technology and applications. The ongoing efforts aim to pave the way for industry to tap the emerging microfluidics market. Since the launch of the SIMTech Microfluidics Foundry in 2011, it has supported more than 20 companies in the chemicals, diagnostic, life science and precision engineering industry.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Diagnostic Thread - Weaving the Future?
Researchers have created diagnostic threads that could pave the way for next-gen implantable and wearable diagnostics.
R&D Agreement for Development of CtDNA Diagnostics
SeraCare and NIST partner for development of ctDNA diagnostic assay reference materials.
Adipose Analysis on Microfluidic Chips
Scientists have developed a microfluidic chip the works with minute liquid quantities to grow and study cells.
New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
DNA Production Facility Begins Operation
Scientists mark the opening of the UK's first fully automated DNA construction and modification facility.
A “Micro Winery” That Makes Wine Continuously
An American professor, working in collaboration with EPFL, is developing a miniature device for producing wine non-stop and testing different fermentation processes.
Testing for Malaria or Cancer at Home
Chemist develops tech to save lives in rural Africa.
Tough New Hydrogel Hybrid Doesn’t Dry Out
Water-based material could be used to make artificial skin, longer-lasting contact lenses.
Lasers Carve the Path to Tissue Engineering
A new technique, developed at EPFL, combines microfluidics and lasers to guide cells in 3D space, overcoming major limitations to tissue engineering.
A Future Tool for Medicine, Food Safety
A new type of electronic sensor that might be used to quickly detect and classify bacteria for medical diagnostics and food safety has passed a key hurdle by distinguishing between dead and living bacteria cells.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!