Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Optical Traps on Chip Manipulate Many Molecules at Once

Published: Wednesday, April 30, 2014
Last Updated: Wednesday, April 30, 2014
Bookmark and Share
By shrinking the technology of an optical trap onto a single chip, Cornell physicists have created a device that can potentially reduce month-long experiments to days.

Optical trapping, a technique for studying single molecules, is traditionally delicate, requiring special equipment and a soundproof room, with data collected one molecule at a time.

Cornell physicists have shrunk the technology of an optical trap, which uses light to suspend and manipulate molecules like DNA and proteins, onto a single chip. And instead of just one molecule at a time, the new device can potentially trap hundreds of molecules at once, reducing month-long experiments to days.

“We love single-molecule experiments because the data are beautiful and clear, and we learn so much by manipulating and perturbing molecules and watching how things change,” said Michelle Wang, professor of physics, who led the study published online in Nature Nanotechnology April 28. But the experimental technique itself could use some improvement, which motivated Wang, who studies DNA and its associated motor proteins, to contemplate solutions.

Wang and colleagues developed a new type of optical trap, drawing on nanophotonics – in this case, using light as nanoscale controllers – as well as on-chip electronics and microfluidics to make a low-power, stable device that can be fitted to conventional microscopes.

Their key innovation is the generation of controllable optical standing waves in nanophotonic waveguides, formed by two counter-propagating light waves, which function as optical trap arrays. This design recycles the same light to produce multiple traps, each of which can hold one molecule, for example, a single molecule of DNA.

“What we have here is a stable and controllable three-dimensional trap array,” Wang said. “That’s never been done before.” They call their device a nanophotonic standing wave array trap, or nSWAT.

 To test the device’s stability – a key breakthrough – lab members physically tapped on the microscope where they’d mounted their chip.  Due to the compact nature of the device, which fits on a penny, they detected little, if any disturbance.  

In their paper, they also described transporting molecules over a relatively long distance using the waveguides. This ability lets the new optical trap integrate with existing fluorescence labeling techniques for tagging molecules of interest.

Fabrication of the nSWAT was done exclusively at the Cornell NanoScale Science and Technology Facility (CNF).

Experiments described in the paper, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” were completed primarily by co-first authors Mohammad Soltani and Jun Lin, both postdoctoral associates in the Wang lab, with substantial help from several students and postdocs in the lab.  Early stages of the project involved helpful discussions with, and loaned equipment from, co-author Michal Lipson, professor of electrical and computer engineering, a nanophotonics expert.

The American Cancer Society, National Institutes of Health, National Science Foundation, and the Howard Hughes Medical Institute, where Wang is an investigator, provided funding.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Ingested Nanoparticles May Damage Liver
Although nanoparticles in food, sunscreen and other everyday products have many benefits, researchers from Cornell are finding that at certain doses, the particles might cause human organ damage.
Tuesday, August 12, 2014
New Micro Water Sensor Can Aid Growers
Crop growers, wine grape and other fruit growers, food processors and even concrete makers all benefit from water sensors for accurate, steady and numerous moisture readings.
Monday, October 14, 2013
New DNA Cattle Test Beefs up Dairy and Meat Quality
A genomics technique developed at Cornell to improve corn can now be used to improve the quality of milk and meat.
Wednesday, May 22, 2013
NIH-Funded Tissue Chips would Predict Drug Safety
Researchers from Cornell University will develop microphysiological modules to model the nervous, circulatory and gastrointestinal tract systems.
Friday, August 31, 2012
The Force is with us: GEDI Chip Sorts Prostate Cancer Cells
Geometrically Enhanced Differential Immunocapture chip identify and collect cancer cells from a patient's bloodstream.
Friday, June 29, 2012
Artificial Intestine Could Treat Children's Bowel Condition
A tiny 3-D collagen "scaffold" developed in a Cornell lab could prove a lifesaver for those who have lost parts of their intestine.
Monday, December 12, 2011
Microfluidic Devices for Circulating Tumor Cell Capture
The Kirby Research Group at Cornell University are attempting to use microfluidic devices to capture circulating tumor cells from prostate cancer patients, with a view towards preclinical evaluation of chemotherapeutic efficacy.
Tuesday, November 23, 2010
Scientific News
Lab-on-a-Chip Offers Promise for TB and Asthma Patients
A device to mix liquids using ultrasonics is the first and most difficult component in a miniaturized system for low-cost analysis of sputum from patients with pulmonary diseases such as tuberculosis and asthma.
Paving the way to Better Ovarian Cancer Diagnosis
Aïcha BenTaieb will present her invention for automated identification of ovarian cancer’s many subtypes at an international conference this fall.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Futuristic Brain Probe Allows for Wireless Control of Neurons
NIH-funded scientists developed an ultra-thin, minimally invasive device for controlling brain cells with drugs and light.
Microfluidic Device Mixes And Matches DNA For Synthetic Biology
Researchers have developed a microfluidic device that quickly builds packages of DNA and delivers them into bacteria or yeast for further testing.
Artificial Pancreas Controls Diabetes
Scientists are reporting the development of an implantable “artificial pancreas” that continuously measures a person’s blood sugar, or glucose, level and can automatically release insulin as needed.
Major Step for Implantable Drug-Delivery Device
MIT spinout signs deal to commercialize microchips that release therapeutics inside the body.
Smart Insulin Patch Could Replace Painful Injections for Diabetes
A joint effort between diabetes doctors and biomedical engineers could revolutionize how people with diabetes keep their blood sugar levels in check.
The Secrets of Secretion
Researchers have hacked nature's blueprints to create a new technology that could have broad-reaching impact on drug delivery systems and self-healing and anti-fouling materials.
New Tool on Horizon for Surgeons Treating Cancer Patients
Surgeons could know while their patients are still on the operating table if a tissue is cancerous, according to researchers.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!