Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Automating Laboratory-On-A-Chip To Cut Healthcare Costs

Published: Friday, June 20, 2014
Last Updated: Monday, July 07, 2014
Bookmark and Share
Computer programming language automates “laboratory-on-a-chip” technologies and has potential to improve and reduce cost of healthcare.

A research team at the University of California, Riverside has created a computer programming language that will automate “laboratory-on-a-chip” technologies used in DNA sequencing, drug discovery, virus detection and other biomedical applications.

A laboratory-on-a-chip is a device that integrates laboratory functions on a chip that is only millimeters or centimeters in size. The technology allows for the automation and miniaturization of biochemical reactions. It has the potential and to improve and reduce the cost of healthcare.

“If you think of the beginning of computers they were basically tools to automate mathematics,” saidPhilip Brisk, an assistant professor in the Department of Computer Science and Engineering at UC Riverside’s Bourns College of Engineering. “What are we are creating is devices that could automate chemistry in much the same way.”

The most recent laboratory-on-a-chip devices are equipped with integrated electronic sensors, similar in principle to those used in today’s smart phones and tablet PCs. These sensors enable scientists and health care professionals working with the devices to analyze the sensor data to make informed decisions about future analyses to perform.

Brisk and his research team are funneling the sensor data into a computer, facilitating automated decision making, rather than employing a human-in-the-loop.

“We are really trying to eliminate as much human interaction as possible,” Brisk said. “Now, you have a chip, you use it and then you analyze it. Through automation and programmability, you eliminate human error, cuts costs and speed up the entire process.”

Brisk’s findings were recently published in a paper, “Interpreting Assays with Control Flow on Digital Microfluidic Biochips,” in ACM Journal on Emerging Technologies in Computing Systems.

There were two co-authors: Daniel Grissom, one of Brisk’s Ph.D. students; and Christopher Curtis, who worked with Brisk for three years as an undergraduate and plans to return as a Ph.D. student in the fall.

The team started with an existing biological programming language, BioCoder, developed by Microsoft’s research office in India. It was originally created to improve the reproducibility and automation of biology experiments by using a programming language to express the series of steps taken.

The UC Riverside team modified BioCoder to process sensor feedback in real-time. Using a software simulator to mimic the behavior of a laboratory-on-a-chip, they proved it works.  Now, in conjunction withWilliam Grover, an assistant professor of bioengineering at UC Riverside, they plan to build a prototype chip that can be used for real world applications.

This research is supported by the National Science Foundation under grant CNS-1035603, an NSF Graduate Research Fellowship awarded to Grissom, and a UC Riverside Dissertation Year Fellowship, also awarded to Grissom, who completes his Ph.D. in June, 2014.

Brisk was also recently awarded a five-year, $493,645 National Science Foundation CAREER grant for related research to apply semiconductor design automation and layout principles to laboratory-on-a-chip technology.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Diagnostic Thread - Weaving the Future?
Researchers have created diagnostic threads that could pave the way for next-gen implantable and wearable diagnostics.
R&D Agreement for Development of CtDNA Diagnostics
SeraCare and NIST partner for development of ctDNA diagnostic assay reference materials.
Adipose Analysis on Microfluidic Chips
Scientists have developed a microfluidic chip the works with minute liquid quantities to grow and study cells.
New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
DNA Production Facility Begins Operation
Scientists mark the opening of the UK's first fully automated DNA construction and modification facility.
A “Micro Winery” That Makes Wine Continuously
An American professor, working in collaboration with EPFL, is developing a miniature device for producing wine non-stop and testing different fermentation processes.
Testing for Malaria or Cancer at Home
Chemist develops tech to save lives in rural Africa.
Tough New Hydrogel Hybrid Doesn’t Dry Out
Water-based material could be used to make artificial skin, longer-lasting contact lenses.
Lasers Carve the Path to Tissue Engineering
A new technique, developed at EPFL, combines microfluidics and lasers to guide cells in 3D space, overcoming major limitations to tissue engineering.
A Future Tool for Medicine, Food Safety
A new type of electronic sensor that might be used to quickly detect and classify bacteria for medical diagnostics and food safety has passed a key hurdle by distinguishing between dead and living bacteria cells.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!