Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Harvard University and Oxford Nanopore Technologies Announce Licence Agreement

Published: Monday, August 11, 2008
Last Updated: Monday, August 11, 2008
Bookmark and Share
The agreement aims to progress nanopore science by integrating Harvard discoveries with technology in development at Oxford Nanopore.

Harvard University’s Office of Technology Development (Harvard) and Oxford Nanopore Technologies Ltd (Oxford Nanopore) have announced an agreement to progress nanopore science by integrating Harvard discoveries with technology in development at Oxford Nanopore.

Under the terms of this agreement with Harvard, Oxford Nanopore has exclusive rights to develop and commercialize a number of nanopore technological breakthroughs developed in the laboratories of three investigators at Harvard and their collaborators at the University of California Santa Cruz (UCSC) and the National Institute of Standards and Technology (NIST), an agency of the US Department of Commerce.

The investigators include: Professors Daniel Branton, George Church and Jene Golovchenko at Harvard; David Deamer and Mark Akeson at UCSC and John Kasianowicz at NIST.

These academics have pioneered the research of DNA translocation through nanopores and the potential for DNA sequencing using this method. This is complementary to the work of Professor Hagan Bayley, the founder of Oxford Nanopore Technologies. Professor Bayley pioneered the field of nanopores as sensors of single molecules, with a specific focus on the identification of DNA bases.

Oxford Nanopore will also support fundamental nanopore research at Harvard, facilitating further advancement of the field and generating opportunities for further evolutions of nanopore sequencing technology.

Oxford Nanopore is developing nanopores for use in DNA sequencing and the analysis of other molecules. A nanopore is a small hole; this inner diameter is small enough to be used in the direct identification of many single molecules, without using chemical labels. This technology has the potential to deliver a dramatic reduction in the cost and speed of DNA sequencing, benefiting basic medical research and further the field of personalized medicine.

A dramatic improvement in sequencing technology would have a profound effect on life science and medical research, furthering genome research and the development of new medical diagnostics, treatments and strategies. There are many additional applications of sequencing, within the fields of defense, energy and agriculture.

The single molecule analysis platform being developed at Oxford Nanopore is label-free, and is therefore positioned to deliver a step-change in the power and cost of DNA sequencing.

While current technologies rely on expensive fluorescent labels, optical equipment for signal detection and informatics to translate image data into sequence data, nanopores bypass the optical detection by providing a direct electrical recording of DNA base identification. The method is highly scalable through silicon chip arrays.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

The Secrets of Secretion
Researchers have hacked nature's blueprints to create a new technology that could have broad-reaching impact on drug delivery systems and self-healing and anti-fouling materials.
Tuesday, June 23, 2015
Catching And Releasing Tiny Molecules
New technique for sorting biomolecules could lead to efficient clinical diagnostics and chemical purification.
Tuesday, March 24, 2015
Airway Muscle-On-A-Chip Mimics Asthma
Tissue-level model of human airway musculature could pave way for patient-specific asthma treatments.
Wednesday, September 24, 2014
Living, Breathing Human Lung-on-a-chip: A Potential Drug-Testing Alternative
Researchers develop a device that acts much like a lung in a human body and is made using human lung and blood vessel cells.
Wednesday, June 30, 2010
Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Device May Detect Urinary Tract Infections Faster
A Lab-on-a-Disc platform developed by a German and Irish team of researchers dramatically cut the time to detect bacterial species that cause urinary tract infections -- a major cause of sepsis.
Automation Abound at AACC in Atlanta
Discover the latest breakthroughs, trends and products from the AACC Annual Meeting & Clinical Lab Expo.
Real-Time Data for Cancer Therapy
Biochemical sensor implanted at initial biopsy could allow doctors to better monitor and adjust cancer treatments.
Lab-on-a-Chip Offers Promise for TB and Asthma Patients
A device to mix liquids using ultrasonics is the first and most difficult component in a miniaturized system for low-cost analysis of sputum from patients with pulmonary diseases such as tuberculosis and asthma.
Paving the way to Better Ovarian Cancer Diagnosis
Aïcha BenTaieb will present her invention for automated identification of ovarian cancer’s many subtypes at an international conference this fall.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Futuristic Brain Probe Allows for Wireless Control of Neurons
NIH-funded scientists developed an ultra-thin, minimally invasive device for controlling brain cells with drugs and light.
Microfluidic Device Mixes And Matches DNA For Synthetic Biology
Researchers have developed a microfluidic device that quickly builds packages of DNA and delivers them into bacteria or yeast for further testing.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!