Corporate Banner
Satellite Banner
Automation & Microfluidics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Harvard University and Oxford Nanopore Technologies Announce Licence Agreement

Published: Monday, August 11, 2008
Last Updated: Monday, August 11, 2008
Bookmark and Share
The agreement aims to progress nanopore science by integrating Harvard discoveries with technology in development at Oxford Nanopore.

Harvard University’s Office of Technology Development (Harvard) and Oxford Nanopore Technologies Ltd (Oxford Nanopore) have announced an agreement to progress nanopore science by integrating Harvard discoveries with technology in development at Oxford Nanopore.

Under the terms of this agreement with Harvard, Oxford Nanopore has exclusive rights to develop and commercialize a number of nanopore technological breakthroughs developed in the laboratories of three investigators at Harvard and their collaborators at the University of California Santa Cruz (UCSC) and the National Institute of Standards and Technology (NIST), an agency of the US Department of Commerce.

The investigators include: Professors Daniel Branton, George Church and Jene Golovchenko at Harvard; David Deamer and Mark Akeson at UCSC and John Kasianowicz at NIST.

These academics have pioneered the research of DNA translocation through nanopores and the potential for DNA sequencing using this method. This is complementary to the work of Professor Hagan Bayley, the founder of Oxford Nanopore Technologies. Professor Bayley pioneered the field of nanopores as sensors of single molecules, with a specific focus on the identification of DNA bases.

Oxford Nanopore will also support fundamental nanopore research at Harvard, facilitating further advancement of the field and generating opportunities for further evolutions of nanopore sequencing technology.

Oxford Nanopore is developing nanopores for use in DNA sequencing and the analysis of other molecules. A nanopore is a small hole; this inner diameter is small enough to be used in the direct identification of many single molecules, without using chemical labels. This technology has the potential to deliver a dramatic reduction in the cost and speed of DNA sequencing, benefiting basic medical research and further the field of personalized medicine.

A dramatic improvement in sequencing technology would have a profound effect on life science and medical research, furthering genome research and the development of new medical diagnostics, treatments and strategies. There are many additional applications of sequencing, within the fields of defense, energy and agriculture.

The single molecule analysis platform being developed at Oxford Nanopore is label-free, and is therefore positioned to deliver a step-change in the power and cost of DNA sequencing.

While current technologies rely on expensive fluorescent labels, optical equipment for signal detection and informatics to translate image data into sequence data, nanopores bypass the optical detection by providing a direct electrical recording of DNA base identification. The method is highly scalable through silicon chip arrays.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Diagnosing Cancer from a Single Drop of Blood
What if a physician could effectively diagnose cancer from one drop of a patient’s blood?
Friday, January 08, 2016
Detecting When and Why Deadly Blood Clots Form
New bioinspired blood coagulation assay is more sensitive than existing assays and could one day be used to diagnose rare bleeding disorders and prevent toxic effects of anticoagulant and antiplatelet drugs.
Wednesday, January 06, 2016
Gut-on-a-Chip Model Offers Hope for IBD Sufferers
Wyss Institute replicates gut’s microenvironment in the lab, allowing researchers new access.
Thursday, December 17, 2015
The Secrets of Secretion
Researchers have hacked nature's blueprints to create a new technology that could have broad-reaching impact on drug delivery systems and self-healing and anti-fouling materials.
Tuesday, June 23, 2015
Catching And Releasing Tiny Molecules
New technique for sorting biomolecules could lead to efficient clinical diagnostics and chemical purification.
Tuesday, March 24, 2015
Airway Muscle-On-A-Chip Mimics Asthma
Tissue-level model of human airway musculature could pave way for patient-specific asthma treatments.
Wednesday, September 24, 2014
Living, Breathing Human Lung-on-a-chip: A Potential Drug-Testing Alternative
Researchers develop a device that acts much like a lung in a human body and is made using human lung and blood vessel cells.
Wednesday, June 30, 2010
Scientific News
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Blood-brain Barrier on a Chip
Researchers from Vanderbilt University have developed a microfluidic device to study the blood-brain barrier.
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
Peer Review is in Crisis, But Should be Fixed, Not Abolished
After the time to get the science done, peer review has become the slowest step in the process of sharing studies, and some scientists have had enough.
Making Every Cell Matter
New method for encapsulating single cells within microgels could boost efficacy of cell-based therapies and tissue engineering.
Modelling Cigarette Effects with Airway-on-a-Chip
An instrument that smokes cigarettes like a human, and delivers whole smoke to the air space of microfluidic human airway chips, enables new insights into how non-smokers and COPD patients respond to smoke.
Robotic Cleaning Technique Could Automate Neuroscience Research
New robotic cleaning technique allows pipettes used in patch-clamping to be re-used up to 11 or more times.
Lab-on-a-Chip to Help Detect Cancer
In this podcast, we speak to Gustavo Stolovitsky to learn about his career and the work he is doing at IBM Research.
First Entirely 3D-printed Organ-on-a-Chip with Integrated Sensors
New approach to manufacturing may allow researchers to rapidly design organs-on-chips that match the properties of a specific disease or individual patient's cells.
3D-Printing in Science: Conference Co-Staged with LABVOLUTION
LABVOLUTION 2017 will have an added highlight of a simultaneous conference, "3D-Printing in Science".
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!