Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

DARPA and NIH to Fund ‘Human Body on a Chip’ Research

Published: Wednesday, July 25, 2012
Last Updated: Wednesday, July 25, 2012
Bookmark and Share
MIT-led team to receive up to $32 million to develop technology that could accelerate pace and efficiency of pharmaceutical testing.

Researchers in the Department of Biological Engineering at MIT will receive up to $32 million over the next five years from the Defense Advanced Research Projects Agency (DARPA) and the National Institutes of Health (NIH) to develop a technology platform that will mimic human physiological systems in the laboratory, using an array of integrated, interchangeable engineered human tissue constructs.

A cooperative agreement between MIT and DARPA worth up to $26.3 million will be used to establish a new program titled “Barrier-Immune-Organ: MIcrophysiology, Microenvironment Engineered TIssue Construct Systems” (BIO-MIMETICS) at MIT, in collaboration with researchers at the Charles Stark Draper Laboratory, MatTek Corp. and Zyoxel Ltd. The BIO-MIMETICS proposal was one of two award winners selected as part of the Microphysiological Systems (MPS) program at DARPA, and will be led by MIT professor Linda Griffith in collaboration with MIT professors Steven Tannenbaum, Darrell Irvine, Paula Hammond, Eric Alm and Douglas Lauffenburger. Jeffrey Borenstein and Shankar Sundaram will lead the work at Draper Laboratory, Patrick Hayden will lead the work at MatTek, and David Hughes will lead the work at Zyoxel.

The BIO-MIMETICS program will combine technologies developed at MIT, Draper Laboratory, MatTek and Zyoxel to create a versatile microfluidic platform that can incorporate up to 10 individual engineered human microphysiological organ system modules in an interacting circuit. The modules will be designed to mimic the functions of specific organ systems representing a broad spectrum of human tissues, including the circulatory, endocrine, gastrointestinal, immune, integumentary, musculoskeletal, nervous, reproductive, respiratory and urinary systems. The goal of the program is to create a versatile platform capable of accurately predicting drug and vaccine efficacy, toxicity, and pharmacokinetics in preclinical testing. The BIO-MIMETICS team anticipates that the platform will be suitable for use in regulatory review, amenable to rapid translation to the biopharmaceutical research community, and adaptable for integration of future technologies (such as advances in stem cell technologies and personalized medicine).

A cooperative agreement worth up to $6.25 million from the National Center for Advancing Translational Sciences (NCATS) at NIH will support a complementary research initiative at MIT and Draper Laboratory, in collaboration with professors Alan Wells, Donna Stolz and Raman Venkataramanan at the University of Pittsburgh. The aim of this project is to model cancer metastasis therapies using engineered human tissue constructs, with a goal of adapting this work to the integrated BIO-MIMETICS platform.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Monday, August 17, 2015
Microscopic “Walkers” Find Their Way Across Cell Surfaces
Technology could provide a way to deliver probes or drugs to cell structures without outside guidance.
Thursday, October 23, 2014
Getting Metabolism Right
Analysis of 89 models of metabolic processes finds flaws in 44 of them — but suggests corrections.
Thursday, October 09, 2014
New Drug Candidate Shows Promise Against Cancer
Drugs containing platinum are among the most powerful and widely used cancer drugs. However, such drugs have toxic side effects, and cancer cells can eventually become resistant to them.
Wednesday, July 11, 2012
Team Develops Nanoparticles to Battle Cancer
An MIT professor and her colleagues have created nanoparticles that mimic blood platelets.
Monday, February 05, 2007
Scientific News
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Novel Technique for Kidney Research Developed
To better understand how the treatment leads to kidney damage, and possibly prevent it, a team of researchers at Yale School of Medicine developed a new 3D-imaging technique to peer deep into these vital organs.
Microscopic Fish are 3D-Printed to do More Than Swim
Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities.
Promising Class of New Cancer Drugs Cause Memory Loss in Mice
New findings from The Rockefeller University suggest that the original version of BET inhibitors causes molecular changes in mouse neurons, and can lead to memory loss in mice that receive it.
A Better Way to Personalize Bladder Cancer Treatments
Researchers at UC Davis, in collaboration with colleagues at Jackson Laboratory, have developed a new way to personalize treatments for aggressive bladder cancer.
Breath of Fresh Air for Asthmatics
Researchers hope to develop a platform that will allow a range of drugs to be delivered by inhalation.
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Elastic Patch Releases Drugs in a Stretch
Researchers from have developed a drug delivery technology that consists of an elastic patch that can be applied to the skin and will release drugs whenever the patch is stretched.
New Extra ‘Sticky’ Microgel Could Revolutionise Bladder Cancer Treatment
Researchers have designed a new super-efficient way of delivering an anti-cancer drug which could extend and improve the quality of life for bladder cancer patients - and perhaps save lives.
Liposomes: A Basis for Drugs of the Future
An international group of scientists have recently presented a review of liposomes, microscopic capsules widely used all over the world in the development of new drugs.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!