Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH-Funded Tissue Chips would Predict Drug Safety

Published: Friday, August 31, 2012
Last Updated: Friday, August 31, 2012
Bookmark and Share
Researchers from Cornell University will develop microphysiological modules to model the nervous, circulatory and gastrointestinal tract systems.

Cornell's Michael Shuler  has received National Institutes of Health (NIH) funding to make 3-D chips with living cells and tissues that model the structure and function of human organs and help predict drug safety.

Shuler, the James and Marsha McCormick Chair of the Department of Biomedical Engineering, and James Hickman of the University of Central Florida (UCF) jointly received one of 17 NIH grants for tissue chip projects.

Shuler and Hickman's grant of approximately $9 million over five years includes subcontracts to UCF, RegenMed, GE, Sanford-Burnham and Walter Reed Army Institute. It will support their work in microphysiological systems with functional readouts for drug candidate analysis during preclinical testing.

The researchers also plan to build a 10-organ system designed to be low-cost yet highly functional to use in drug discovery, toxicity and preclinical studies.

With the funds, the NIH is supporting bio-engineered devices that will be functionally relevant and will accurately reflect the complexity of a particular tissue, including genomic diversity, disease complexity and pharmacological response.

The NIH tissue chip projects will be tested with compounds known to be safe or toxic in humans to help identify the most reliable drug safety signals -- ultimately advancing research to help predict the safety of drugs in a faster, more cost-effective way.

The initiative marks the first interagency collaboration, with the Defense Advanced Research Projects Agency, launched by the NIH's recently created National Center for Advancing Translational Sciences. The NIH plans to commit up to $70 million over five years to the program.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Novel Technique for Kidney Research Developed
To better understand how the treatment leads to kidney damage, and possibly prevent it, a team of researchers at Yale School of Medicine developed a new 3D-imaging technique to peer deep into these vital organs.
Microscopic Fish are 3D-Printed to do More Than Swim
Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities.
Promising Class of New Cancer Drugs Cause Memory Loss in Mice
New findings from The Rockefeller University suggest that the original version of BET inhibitors causes molecular changes in mouse neurons, and can lead to memory loss in mice that receive it.
A Better Way to Personalize Bladder Cancer Treatments
Researchers at UC Davis, in collaboration with colleagues at Jackson Laboratory, have developed a new way to personalize treatments for aggressive bladder cancer.
Breath of Fresh Air for Asthmatics
Researchers hope to develop a platform that will allow a range of drugs to be delivered by inhalation.
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Elastic Patch Releases Drugs in a Stretch
Researchers from have developed a drug delivery technology that consists of an elastic patch that can be applied to the skin and will release drugs whenever the patch is stretched.
New Extra ‘Sticky’ Microgel Could Revolutionise Bladder Cancer Treatment
Researchers have designed a new super-efficient way of delivering an anti-cancer drug which could extend and improve the quality of life for bladder cancer patients - and perhaps save lives.
Liposomes: A Basis for Drugs of the Future
An international group of scientists have recently presented a review of liposomes, microscopic capsules widely used all over the world in the development of new drugs.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!