Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Rockland and LIMR Expand Licensing and Commercialization Relationship

Published: Tuesday, October 30, 2012
Last Updated: Tuesday, October 30, 2012
Bookmark and Share
Rockland will market established technologies including the CellCountEZ®, OxPhos™, RadDose™ and the Intracellular ThiolEZ™ assays.

Rockland Immunochemicals Inc., has announced the expansion of a licensing and commercialization relationship with Lankenau Institute for Medical Research (LIMR) through its business development subsidiary LIMR Development, Inc. (LDI). Instrumental in advancing this relationship was Carl Leighton of Wildwood Capital.

According to a new agreement, Rockland Immunochemicals will market established technologies including the CellCountEZ®, OxPhos™, RadDose™ and the Intracellular ThiolEZ™ assays.

Detailed product information is provided at www.limrdevelopment.com and www.rockland-inc.com/limr-collaboration.

George Prendergast, PhD, President and CEO of LIMR stated: “We have been very pleased with our partnership with Rockland and are looking forward to continued success within this expanded relationship.”

"LIMR's independent research encompassing cancer and inflammation elegantly enhances Rockland's antibody portfolio and technology platform. It is my belief that the new products included in our expanded licensing and commercialization agreement will enhance our ability to bring unique scientific opportunities to the global research community," commented James Fendrick, President and CEO of Rockland Immunochemicals.

Included in the additional product lines will be the CellCountEZ® assay measuring metabolically active cells while simultaneously quantifying cell death to determine cell viability, cell toxicity or cellular proliferation.

The OxPhos™ assay is capable of determining the cellular glutathione recycling capacity in tissue culture as well as that of whole blood, thus providing insight into oxidative stress during the aging process, antioxidant levels upon delivery of chemotherapy regime and toxicology.

The RadDose™ assay is used for the measurement of ionizing radiation dose rates, while the Intracellular ThiolEZ™ assay is capable of determining total intracellular thiols, including glutathione and cysteine, as a means of investigating the aging, oxidative stress, antioxidant, chemotherapy response and toxicology processes.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Turning Skin Cells into Heart, Brain Cells
In a major breakthrough, scientists at the Gladstone Institutes transformed skin cells into heart cells and brain cells using a combination of chemicals.
Growing Stem Cells More Safely
Nurturing stem cells atop a bed of mouse cells works well, but is a non-starter for transplants to patients – Brown University scientists are developing a synthetic bed instead.
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Experimental Drug Cancels Effect from Key Intellectual Disability Gene
A University of Wisconsin—Madison researcher who studies the most common genetic intellectual disability has used an experimental drug to reverse — in mice — damage from the mutation that causes the syndrome.
Common Class of Cancer Drugs May Not Lead to Cognitive Decline
UCLA study refutes 2015 research suggesting anthracyclines could cause memory loss, other impairments.
Designing Better Drugs
A rational drug engineering approach could breathe new life into drug development.
Genetic Approach May Lead to New Treatments for Digestive Diseases
Researchers at UMass Medical School have identified a new molecular pathway critical for maintaining the smooth muscle tone that allows the passage of materials through the digestive system.
Potential Target for Revolutionary Antibiotics
An international team of including the Lomonosov Moscow State University researchers discovered which enzyme enables Escherichia coli bacterium (E. coli) to breathe.
Unique Model for Studying ALS
Unique mouse model will allow researchers to better study the genetic origins and potential treatments of ALS.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!