Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

UK Researchers use Nanoscale Thermal Analysis Techniques to Improve Drug Delivery Systems

Published: Tuesday, December 04, 2012
Last Updated: Tuesday, December 04, 2012
Bookmark and Share
Anasys Instruments report on the use of their award-winning nanoscale characterization instrumentation to advance developments in the understanding of drug delivery systems.

The Drug Delivery & Materials Characterization Group at the University of East Anglia, UK, is internationally recognized for work involving the development of novel thermal, dielectric, rheological and microscopic techniques as analytical tools within the pharmaceutical sciences. There is particular emphasis on the study of the physical properties of drugs and dosage forms in relation to performance.

Post-doctoral researcher, Jonathan Moffat, is focused on delivery of poorly water soluble drugs and in particular characterization of delivery systems. His team creates solid dispersions using a variety of different methods which include hot melt extrusion, spray drying and spin coating. Solid dispersions are systems where one or more components are molecularly dispersed in a matrix/carrier. This idea means that if you are able to disperse your drug in a water soluble matrix such as a polymer, then you can improve the dissolution profile and improve the bioavailability of the drug.

The standard characterization methods for these systems include DSC, FTIR and PXRD. Their drawback is that they only provide bulk information. Dr Moffat comments: "As we are analyzing samples consisting of two or more components, we are interested in looking at the distribution, form and at the interface of components. These standard techniques cannot provide this information. Also, the surface of these systems is extremely important as this is the interface between the delivery system and the body. We chose the Anasys nano-TA system as it permits a thorough surface characterization. It is used alongside standard AFM & SEM imaging methods."

Dr Moffat continues: "Whilst these methods can provide high resolution images of the surface of our samples, they cannot provide information on the components within the system. Using nanoTA along with AFM allows the user to pick out features on the surface, interrogate them and subsequently determine the individual component via its transition temperature. As well as determining the component, it is also possible to determine its morphological properties as the transition temperature is sensitive to differences in these properties. This is something that can be difficult to determine with spectroscopic techniques. We also use Transition Temperature Microscopy, TTM, for our samples. This gives a systematic approach to determine the distribution and form of the components and also provides information on how well mixed the systems and whether there is any phase separation."

An example of this work was presented in a poster at the recent AAPS meeting held in Chicago. Dr Moffat's poster presented with co-author, Professor Duncan Craig from UEA, was entitled "Thermal Probe Methods for Nanoscale Characterization of Cyclosporin A Solid Dispersions Prepared by Hot Melt Extrusion."

Kevin Kjoller, Anasys' co-founder and Vice President, says "We're very excited about this new work by Dr Moffat and Professor Craig which potentially opens up a new market for our nanoscale thermal analysis technology." For more details, visit www.anasysinstruments.com/application/nanota-app/.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Novel Technique for Kidney Research Developed
To better understand how the treatment leads to kidney damage, and possibly prevent it, a team of researchers at Yale School of Medicine developed a new 3D-imaging technique to peer deep into these vital organs.
Microscopic Fish are 3D-Printed to do More Than Swim
Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities.
Promising Class of New Cancer Drugs Cause Memory Loss in Mice
New findings from The Rockefeller University suggest that the original version of BET inhibitors causes molecular changes in mouse neurons, and can lead to memory loss in mice that receive it.
A Better Way to Personalize Bladder Cancer Treatments
Researchers at UC Davis, in collaboration with colleagues at Jackson Laboratory, have developed a new way to personalize treatments for aggressive bladder cancer.
Breath of Fresh Air for Asthmatics
Researchers hope to develop a platform that will allow a range of drugs to be delivered by inhalation.
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Elastic Patch Releases Drugs in a Stretch
Researchers from have developed a drug delivery technology that consists of an elastic patch that can be applied to the skin and will release drugs whenever the patch is stretched.
New Extra ‘Sticky’ Microgel Could Revolutionise Bladder Cancer Treatment
Researchers have designed a new super-efficient way of delivering an anti-cancer drug which could extend and improve the quality of life for bladder cancer patients - and perhaps save lives.
Liposomes: A Basis for Drugs of the Future
An international group of scientists have recently presented a review of liposomes, microscopic capsules widely used all over the world in the development of new drugs.
Common Medications Could Delay Brain Injury Recovery
Drugs used to treat common complaints could delay the recovery of brain injury patients according to research by University of East Anglia (UEA) and University of Aberdeen scientists, published today in Brain Injury.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!