Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cost of Drug Development Reduced Thanks to New Technology

Published: Friday, January 18, 2013
Last Updated: Friday, January 18, 2013
Bookmark and Share
De Montfort University (DMU) has come together with Ithaka Life Sciences Ltd to market new technology designed to speed up and reduce the cost of the development of new drugs and medicines.

A leading expert at DMU, Professor Bob Chaudhuri, has invented the technology which will provide useful new products and services, based on a set of proteins, named cytochrome P450s (CYPs).

CYPs are found in the human liver and are mostly responsible for the metabolism of drugs in people. These proteins are commercially available for use by companies involved in the discovery of new drugs, but are inconvenient to use as they must be transported and stored at temperatures as low as minus 80 degrees Celsius.

This new technology allows for CYPs to be shipped and handled at room temperature, eliminating the need for a cold chain. This will reduce the cost and make their use in testing new drugs much quicker and easier.

Together, DMU and Ithaka have established a new company which will be called CYP Design Ltd (CDL).

Professor Chaudhuri said: “The development of new drugs can be very time-consuming and costly. It can take up to 14 years from the initial idea and cost hundreds of millions of pounds. Thousands of potential new drugs are tested initially for every one successfully brought to market.

“Early drug discovery work has to identify new chemical compounds which are potentially useful without being toxic to humans. Current testing methodologies do not address the problem as these model systems often react differently than humans to new chemicals.

“My group’s development is designed to provide the proteins that are needed for this work in a cost effective and convenient format.

DMU has licensed this new technology to CDL which is now seeking to bring the new products to market. Ithaka has worked closely with Professor Chaudhuri to set up CDL and is leading the implementation of the business strategy through Dr Bill Primrose as CEO and Dr Paul Rodgers as Chairman.

Dr Bill Primrose said: “We’re delighted to be working with DMU and believe that the technology that Professor Chaudhuri has been developing can have a significant impact on the timescales and costs involved in the early stages of drug discovery.

“CYPs are currently transported on dry ice, at around minus 80 degrees Celsius, and are stored as cold as possible in the customer’s laboratory until they are needed.

“His new technology eliminates the need for a cold chain making it easier to manufacture and ship the proteins, and making them much more convenient for the customer to use.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Novel Technique for Kidney Research Developed
To better understand how the treatment leads to kidney damage, and possibly prevent it, a team of researchers at Yale School of Medicine developed a new 3D-imaging technique to peer deep into these vital organs.
Microscopic Fish are 3D-Printed to do More Than Swim
Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities.
Promising Class of New Cancer Drugs Cause Memory Loss in Mice
New findings from The Rockefeller University suggest that the original version of BET inhibitors causes molecular changes in mouse neurons, and can lead to memory loss in mice that receive it.
A Better Way to Personalize Bladder Cancer Treatments
Researchers at UC Davis, in collaboration with colleagues at Jackson Laboratory, have developed a new way to personalize treatments for aggressive bladder cancer.
Breath of Fresh Air for Asthmatics
Researchers hope to develop a platform that will allow a range of drugs to be delivered by inhalation.
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Elastic Patch Releases Drugs in a Stretch
Researchers from have developed a drug delivery technology that consists of an elastic patch that can be applied to the skin and will release drugs whenever the patch is stretched.
New Extra ‘Sticky’ Microgel Could Revolutionise Bladder Cancer Treatment
Researchers have designed a new super-efficient way of delivering an anti-cancer drug which could extend and improve the quality of life for bladder cancer patients - and perhaps save lives.
Liposomes: A Basis for Drugs of the Future
An international group of scientists have recently presented a review of liposomes, microscopic capsules widely used all over the world in the development of new drugs.
Common Medications Could Delay Brain Injury Recovery
Drugs used to treat common complaints could delay the recovery of brain injury patients according to research by University of East Anglia (UEA) and University of Aberdeen scientists, published today in Brain Injury.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!