Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Hamilton Robotics Revolutionizes Automated Biological Sample Card Punching with the easyPunch STARlet System

Published: Tuesday, January 22, 2013
Last Updated: Tuesday, January 22, 2013
Bookmark and Share
Hamilton Robotics in collaboration with GE Healthcare Life Sciences introduces the easyPunch STARlet™ workstation, the first fully automated system integrating sample card punching and liquid handling into one easy workflow.

The easyPunch STARlet system, manufactured in Hamilton’s Bonaduz, Switzerland facility, seamlessly integrates punching of GE Healthcare Whatman FTATM and DMPK sample collection cards with automated sample extraction, eliminating common bottlenecks in laboratory processes. The system minimizes human error and enables high-throughput sample preparation for a variety of applications, such as forensic reference databasing as well as pre-clinical and clinical drug metabolism and pharmacokinetics (DMPK) and toxicology studies.

“Because many labs lack a fully automated workflow, thousands of samples such as blood and saliva placed on punch cards are waiting long periods to be processed for critical studies and forensic analysis,” says Stefan Mauch, Product Manager of the easyPunch STARlet system. "Until now, sample card punching for analysis preparation required tedious manual work or separate semi-automated instruments and an operator. Researchers or technicians had to be consistently precise and experienced when handling and tracking samples, or the results could be compromised.”
The easyPunch workstation is based on the Hamilton Robotics Microlab® STARlet platform and features two special modules and robotic arms for transporting and punching paper cards. The samples are monitored by powerful tracking software to eliminate any chance of sample identification errors. The entire process is tracked using imaging recognition. Hamilton’s proprietary software, based on industrial machine vision technology, provides complete control and monitoring of the punching process. The software recognizes the position and size of the card, identifies the sample by reading the barcode, and determines the punch area. The workstation also takes a picture of the target well to ensure the punch has arrived in the designated well.

Compatibility with library information management systems (LIMS) and full traceability ensure that data can be linked confidently to each sample. The modular nature of the system enables integration of other devices, such as a centrifuge and a plate sealer, thus potentially integrating the entire workflow.

“Ease of use makes this workstation an attractive solution for repetitive tasks in forensic and biopharma sample handling,” says Navjot Kaur, Product Manager at Hamilton Robotics in Reno, Nevada. “Currently technicians manually clean between samples, but the easyPunch STARlet system performs this step automatically, reducing cross-contamination. Barcode reading and imaging support full traceability and reporting of samples, both during punching and downstream processing.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Gut Microbes Signal to the Brain When They're Full
Don't have room for dessert? The bacteria in your gut may be telling you something.
Personalized Drug Screening for Multiple Myeloma Patients
A personalized method for testing the effectiveness of drugs that treat multiple myeloma may predict quickly and more accurately the best treatments for individual patients with the bone marrow cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
Batten Disease may Benefit from Gene Therapy
NIH-funded animal study suggests one-shot approach to injecting genes.
Shedding Light on “Dark” Cellular Receptors
UNC and UCSF labs create a new research tool to find homes for two orphan cell-surface receptors, a crucial step toward finding better therapeutics and causes of drug side effects.
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos