Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Nimbus Discovery Presents Preclinical Data on Sought-After ACC Inhibitors

Published: Tuesday, January 29, 2013
Last Updated: Tuesday, January 29, 2013
Bookmark and Share
Company successfully discovered and optimized the first small molecule allosteric inhibitors of ACC achieving excellent potency, selectivity and drug-like properties within 12 months.

Nimbus Discovery LLC, a biotechnology company discovering novel medicines against exciting but previously inaccessible drug targets, will present preclinical data today at the Keystone Symposia Conference: Adipose Tissue Biology in Keystone, Colo., that show that the company has identified a series of novel, highly potent, and highly selective Acetyl CoA Carboxylase (ACC)1/2 allosteric inhibitors. Inhibition of ACC reduces fatty acid synthesis and stimulates fatty acid oxidation and has the potential to favorably affect the morbidity and mortality associated with obesity, diabetes, and fatty liver diseases.

Most efforts to discover ACC inhibitors have focused on interactions within the carboxyltransferase (CT) domain of the enzyme active center resulting in poor drug-like properties and have thus failed to provide benefit to patients. In contrast, Nimbus focused on the biotin carboxylase (BC) domain where the natural product soraphen interacts. Nimbus ACC allosteric inhibitors demonstrate excellent drug-like properties and show liver-muscle exposure that is aligned with driving outstanding pharmacology in preclinical models of disease.

Key findings of the Nimbus compounds presented at the conference include:

•    Development of this series of ACC inhibitors has yielded deep structure-activity relationships, sub-nanomolar enzyme inhibition, functional activity in cellular assays and favorable drug-like properties leading to in vivo proof of concept.
•    ND-630, the Nimbus lead compound, potently inhibits hepatic fatty acid synthesis (ED50 = 0.14 mg/kg) in a highly dose-dependent manner and stimulates whole body fatty acid oxidation (minimum effective dose 3 mg/kg) in preclinical models of disease.

“Using our state-of-the art structure-based drug design approach, Nimbus was able to identify potent small molecule ACC inhibitors, with excellent pharmaceutical properties, 12 months after hits were generated from an in silico screen. We believe that we are the first company to create drug-like allosteric inhibitors against ACC. The impressive potency and selectivity of our molecules could translate into significant safety and efficacy benefits in the clinic,” said Rosana Kapeller, M.D., Ph.D., Chief Scientific Officer of Nimbus. “We are now conducting a detailed pharmacological evaluation of this broad portfolio of potent allosteric inhibitors, including ND-630, and will provide an update on these data in metabolic disease, diabetes and cancer tumor metabolism models in the near future.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Novel Technique for Kidney Research Developed
To better understand how the treatment leads to kidney damage, and possibly prevent it, a team of researchers at Yale School of Medicine developed a new 3D-imaging technique to peer deep into these vital organs.
Microscopic Fish are 3D-Printed to do More Than Swim
Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities.
Promising Class of New Cancer Drugs Cause Memory Loss in Mice
New findings from The Rockefeller University suggest that the original version of BET inhibitors causes molecular changes in mouse neurons, and can lead to memory loss in mice that receive it.
A Better Way to Personalize Bladder Cancer Treatments
Researchers at UC Davis, in collaboration with colleagues at Jackson Laboratory, have developed a new way to personalize treatments for aggressive bladder cancer.
Breath of Fresh Air for Asthmatics
Researchers hope to develop a platform that will allow a range of drugs to be delivered by inhalation.
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Elastic Patch Releases Drugs in a Stretch
Researchers from have developed a drug delivery technology that consists of an elastic patch that can be applied to the skin and will release drugs whenever the patch is stretched.
New Extra ‘Sticky’ Microgel Could Revolutionise Bladder Cancer Treatment
Researchers have designed a new super-efficient way of delivering an anti-cancer drug which could extend and improve the quality of life for bladder cancer patients - and perhaps save lives.
Liposomes: A Basis for Drugs of the Future
An international group of scientists have recently presented a review of liposomes, microscopic capsules widely used all over the world in the development of new drugs.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!