Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Optibrium and Lhasa Limited Collaborate to Bring High Level Expert Toxicity Prediction

Published: Friday, February 08, 2013
Last Updated: Thursday, February 07, 2013
Bookmark and Share
New Derek™ module for StarDrop™ facilitates the efficient design and selection of safe, efficacious compounds in early drug discovery.

Optibrium and Lhasa Limited have announced a technology collaboration agreement.

Lhasa’s Derek Nexus™ platform for knowledge-based prediction of compound toxicity will be integrated as an optional plug-in module for Optibrium’s StarDrop software, that guides the design and selection of high quality compounds in drug discovery.

The combination of these technologies will enable chemists to intuitively balance the reduction of toxicity risk with the other requirements for a successful, safe and efficacious drug in hit-to-lead and lead optimization.

An easy-to-use reporting feature will facilitate collaboration between chemists and expert toxicologists to interpret and understand the relevance of a potential liability, enabling effective, early decision-making regarding the prioritization of chemistries early in the drug discovery process.

Toxicity of drug candidates is a major cause of expensive, late-stage failure in pre-clinical and clinical development. Lhasa’s Derek Nexus technology uses data from published and donated (unpublished) sources, including a collaboration agreement with the US Food and Drug Administration, to identify structure-toxicity relationships and alert scientists to the potential for compounds to cause toxicity.

Optibrium’s StarDrop software platform intuitively guides decisions on the design and selection of compounds with a high chance of success against a drug discovery project’s objectives.

StarDrop’s unique probabilistic scoring approach to multi-parameter optimization allows predicted and experimental data to be given appropriate weights when balancing the many requirements for a high quality lead or candidate compound.

These include potency against the therapeutic target(s), selectivity against off-targets, and appropriate absorption, distribution, metabolism, elimination and toxicity (ADMET) properties.

The new Derek Nexus module in StarDrop will provide chemists with a prediction of the likelihood of a compound causing toxicity in over 40 endpoints, including mutagenicity, hepatotoxicity and cardiotoxicity.

Furthermore, the region of a compound triggering an alert will be highlighted using StarDrop’s Glowing Molecule™ visualization, helping to guide the redesign of compounds to avoid the potential toxic liability.

StarDrop’s interactive design capabilities and Glowing Molecule™ visualization guide the exploration of strategies to redesign compounds and improve their overall balance of properties.

Combined with interactive chemical space visualization, R-group analysis and data analysis, StarDrop provides a comprehensive platform for the design and selection of compounds, supported by additional plug-in modules providing: ADME QSAR models; prediction of P450 metabolism; robust generation and validation of QSAR models; 3D structure-activity relationships using Cresset’s Field technology; and rapid exploration of virtual chemistry using medicinal chemistry transformations, precedented bioisostere replacements and virtual library enumeration.

Matthew Segall, CEO of Optibrium, commented, “Prediction of toxicity is a key requirement for our users and a major challenge for the industry. We are very happy to be working with the leading experts in the field of knowledge-based toxicity prediction to bring this state-of-the art technology to our users’ desktops. In addition to this new agreement with Lhasa, our ongoing collaborations with Cresset and Digital Chemistry demonstrate our commitment to provide access to the best computational methods through our user-friendly StarDrop environment. We continue to explore new collaborations with leading groups to further this goal.”

David Watson, CEO of Lhasa, added, “Scientists are under unprecedented pressure to increase efficiency through compound design and selection. We are excited by this collaboration which presents scientists with high level toxicity predictions at an early stage in compound development, in an interface that supports their workflow and enables effective decision-making."

The new Derek Nexus module for StarDrop will be available later this year. For a preview of this exciting new technology integration, please visit Lhasa’s stand (#1228) at the upcoming Society of Toxicology meeting in San Antonio, Texas from March 10 - 14 or Optibrium’s stand (#708) at the American Chemical Society Spring National Meeting in New Orleans, Louisiana from April 7 to 11.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Using Drug-Susceptible Parasites to Fight Drug Resistance
Researchers at the University of Georgia have developed a model for evaluating a potential new strategy in the fight against drug-resistant diseases.
Boosting Breast Cancer Treatment
To more efficiently treat breast cancer, scientists have been researching molecules that selectively bind to cancer cells and deliver a substance that can kill the tumor cells, for several years.
How Cells ‘Climb’ to Build Fruit Fly Tracheas
Mipp1 protein helps cells sprout “fingers” for gripping.
Promising Drug Combination for Advanced Prostate Cancer
A new drug combination may be effective in treating men with metastatic prostate cancer. Preliminary results of this new approach are encouraging and have led to an ongoing international study being conducted in 196 hospitals worldwide.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Gut Microbes Signal to the Brain When They're Full
Don't have room for dessert? The bacteria in your gut may be telling you something.
Personalized Drug Screening for Multiple Myeloma Patients
A personalized method for testing the effectiveness of drugs that treat multiple myeloma may predict quickly and more accurately the best treatments for individual patients with the bone marrow cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos