Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Optibrium and Lhasa Limited Collaborate to Bring High Level Expert Toxicity Prediction

Published: Friday, February 08, 2013
Last Updated: Thursday, February 07, 2013
Bookmark and Share
New Derek™ module for StarDrop™ facilitates the efficient design and selection of safe, efficacious compounds in early drug discovery.

Optibrium and Lhasa Limited have announced a technology collaboration agreement.

Lhasa’s Derek Nexus™ platform for knowledge-based prediction of compound toxicity will be integrated as an optional plug-in module for Optibrium’s StarDrop software, that guides the design and selection of high quality compounds in drug discovery.

The combination of these technologies will enable chemists to intuitively balance the reduction of toxicity risk with the other requirements for a successful, safe and efficacious drug in hit-to-lead and lead optimization.

An easy-to-use reporting feature will facilitate collaboration between chemists and expert toxicologists to interpret and understand the relevance of a potential liability, enabling effective, early decision-making regarding the prioritization of chemistries early in the drug discovery process.

Toxicity of drug candidates is a major cause of expensive, late-stage failure in pre-clinical and clinical development. Lhasa’s Derek Nexus technology uses data from published and donated (unpublished) sources, including a collaboration agreement with the US Food and Drug Administration, to identify structure-toxicity relationships and alert scientists to the potential for compounds to cause toxicity.

Optibrium’s StarDrop software platform intuitively guides decisions on the design and selection of compounds with a high chance of success against a drug discovery project’s objectives.

StarDrop’s unique probabilistic scoring approach to multi-parameter optimization allows predicted and experimental data to be given appropriate weights when balancing the many requirements for a high quality lead or candidate compound.

These include potency against the therapeutic target(s), selectivity against off-targets, and appropriate absorption, distribution, metabolism, elimination and toxicity (ADMET) properties.

The new Derek Nexus module in StarDrop will provide chemists with a prediction of the likelihood of a compound causing toxicity in over 40 endpoints, including mutagenicity, hepatotoxicity and cardiotoxicity.

Furthermore, the region of a compound triggering an alert will be highlighted using StarDrop’s Glowing Molecule™ visualization, helping to guide the redesign of compounds to avoid the potential toxic liability.

StarDrop’s interactive design capabilities and Glowing Molecule™ visualization guide the exploration of strategies to redesign compounds and improve their overall balance of properties.

Combined with interactive chemical space visualization, R-group analysis and data analysis, StarDrop provides a comprehensive platform for the design and selection of compounds, supported by additional plug-in modules providing: ADME QSAR models; prediction of P450 metabolism; robust generation and validation of QSAR models; 3D structure-activity relationships using Cresset’s Field technology; and rapid exploration of virtual chemistry using medicinal chemistry transformations, precedented bioisostere replacements and virtual library enumeration.

Matthew Segall, CEO of Optibrium, commented, “Prediction of toxicity is a key requirement for our users and a major challenge for the industry. We are very happy to be working with the leading experts in the field of knowledge-based toxicity prediction to bring this state-of-the art technology to our users’ desktops. In addition to this new agreement with Lhasa, our ongoing collaborations with Cresset and Digital Chemistry demonstrate our commitment to provide access to the best computational methods through our user-friendly StarDrop environment. We continue to explore new collaborations with leading groups to further this goal.”

David Watson, CEO of Lhasa, added, “Scientists are under unprecedented pressure to increase efficiency through compound design and selection. We are excited by this collaboration which presents scientists with high level toxicity predictions at an early stage in compound development, in an interface that supports their workflow and enables effective decision-making."

The new Derek Nexus module for StarDrop will be available later this year. For a preview of this exciting new technology integration, please visit Lhasa’s stand (#1228) at the upcoming Society of Toxicology meeting in San Antonio, Texas from March 10 - 14 or Optibrium’s stand (#708) at the American Chemical Society Spring National Meeting in New Orleans, Louisiana from April 7 to 11.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Insights into the Function of the Main Class of Drug Targets
About thirty percent of all medical drugs such as beta-blockers or antidepressants interact with certain types of cell surface proteins called G protein coupled receptors.
Honey’s Potential to Save Lives
The healing powers of honey have been known for thousands of years.
Muscles on-a-Chip
This study may help explain why stem cell-based therapies have so far shown limited benefits for heart attack patients in clinical trials.
3-D Printed Lifelike Liver Tissue for Drug Screening
A team led by engineers at the University of California, San Diego has 3D-printed a tissue that closely mimics the human liver's sophisticated structure and function. The new model could be used for patient-specific drug screening and disease modeling.
Envigo Rat Models Proven to be Susceptible to Intra-Vaginal HSV-2 Infection and Protectable
Scientific findings establish the effectiveness of new approach to investigate the protective effects of vaccine candidates and anti-viral microbodies and to study asymptomatic primary genital HSV-2 infection.
Valvena, GSK Sign New R&D Collaboration
Valneva to supply process development services for EB66® -based Influenza vaccines.
Food Triggers Creation of Regulatory T Cells
IBS researchers document how normal diet establishes immune tolerance conditions in the small intestine.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Keeping Tumor Growth at Bay
Engineers at Washington University in St. Louis found a way to keep a cancerous tumor from growing by using nanoparticles of the main ingredient in common antacid tablets.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!