Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New 24-well RAFT Kit for Realistic 3D Cell Culture Models for Toxicology Research

Published: Friday, March 08, 2013
Last Updated: Friday, March 08, 2013
Bookmark and Share
Come and see this versatile 3D cell culture method on TAP’s Booth #1159 at SOT.

TAP Biosystems will be unveiling its latest development in 3D cell culture, the RAFT™ 24 well Kit on Booth #1159 at the Society of Toxicology (SOT) Meeting.

The kit can produce realistic, reproducible single or multiple 3D cell cultures in physiologically relevant collagen scaffolds and could improve the results of a range of cell based assay models including those suitable for in-vitro toxicology models.

The new RAFT 24-well kit has been developed in response to researchers’ requests for a 24-well format to generate single or multiple collagen-based 3D cell culture models, ready for in-vitro toxicology research.

The kit is packaged individually to give ultimate flexibility in producing the number of cultures required, without any wastage of consumables or reagents.

The new kit leverages the novel RAFT collagen-based process and works with specially-developed reagents and a plate heater to generate 3D cell cultures using a simple protocol, in less than an hour.

The 24-well kit is the latest addition to the RAFT 3D cell culture portfolio that includes an automation-friendly 96-well version, as well as a kit for 3D cell culture using inserts, enabling researchers to use the RAFT system in a range of therapeutics areas for cell-based screening, modelling and research.

On the booth, TAP’s staff will demonstrate how scientists simply mix the reagents from the RAFT kit with their choice of cells at the desired cell seeding densities, pipette into their preferred type of 24 well plates (Corning, Greiner Bio-One, Millipore and Nunc plates are compatible) and incubate for 15 minutes at 37oC to form a cell-seeded collagen hydrogel.

The RAFT absorbers are placed manually onto the hydrogels, and in just 15 minutes the medium is wicked gently into the absorbers, leaving cells encapsulated in physiological strength collagen.

This 3D cell culture is then suitable for use in in-vitro cell-based assays using analytical techniques such as cell proliferation and immunofluorescent imaging.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

TAP Biosystems Presents New Data on 3D Cell Culture Research
Discussing the application of RAFT 3D models in oncology, toxicology and neuroscience cell-based screening programmes.
Monday, January 20, 2014
Scientific News
Keeping Tumor Growth at Bay
Engineers at Washington University in St. Louis found a way to keep a cancerous tumor from growing by using nanoparticles of the main ingredient in common antacid tablets.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
Bile Acid Supports Production of Blood Stem Cells
A research group at Lund University has been able to show that bile acid is transferred from the mother to the foetus via the placenta to enable the foetus to produce blood stem cells.
Chemical Used to Replace BPA is Potentially Toxic
This study is the first to examine the effects of BPA and BPS on brain cells and genes that control the growth and function of organs involved in reproduction.
A Better Model for Parkinson's
Scientists at EPFL solve a longstanding problem with modeling Parkinson’s disease in animals. Using newfound insights, they improve both cell and animal models for the disease, which can propel research and drug development.
Improving Delivery of Poorly Soluble Drugs Using Nanoparticles
A technology that could forever change the delivery of drugs is undergoing evaluation by the Technology Evaluation Consortium™ (TEC). Developed by researchers at Northeastern University, the technology is capable of creating nanoparticle structures that could deliver drugs into the bloodstream orally – despite the fact that they are normally poorly soluble.
Toxicity Testing With Cultured Liver Cells
Microreactor replaces animal testing.
Neural Networks Adapt to the Presence of a Toxic HIV Protein
HIV-associated neurocognitive disorders (HAND) afflict approximately half of HIV infected patients.
Faster Drug Discovery?
Startup develops more cost-effective test for assessing how cells respond to chemicals.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!