Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Yale Researchers Trick Bacteria to Deliver a Safer Vaccine

Published: Tuesday, March 19, 2013
Last Updated: Tuesday, March 19, 2013
Bookmark and Share
Yale researchers have developed a new trick, using bacteria’s own cellular mistakes to deliver a safe vaccine.

The findings suggest new ways to create novel vaccines that effectively combat disease but can be tolerated by children, the elderly, and the immune-compromised who might be harmed by live vaccines.

“We have managed to assemble a functional protein-injection machine within bacterial mini-cells, and the amazing thing is that it works,” said Jorge Galan, senior author of the paper and the Lucille P. Markey Professor of Microbial Pathogenesis and chair of the Section of Microbial Pathogenesis at Yale.

Galan’s team has assembled the molecular machine used by Salmonella to cause food poisoning or typhoid fever. Scientists have been successful in modifying this protein injection machine to trigger a protective immune response against a variety of infectious diseases. However, it has been necessary to use modified or virulence-attenuated bacteria that carry this machine.

The new trick exploits a mutation that causes bacteria to create “mini-cells” when they improperly divide. Mini-cells contain no DNA and, therefore, are not pathogenic and extremely safe. Galan’s team was able to assemble the protein-injection machines within these bacterial cells, which when administered to mice, deliver antigens that trigger an immune response without causing an infection.

The system could be used to combat cancer as well as a wide variety of infectious diseases, Galan said.

Heather A. Carleton is lead author of the paper. Other Yale authors include Maria Lara-Tejero and Xiaoyun Liu.

The research was funded by the National Institutes of Health.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Novel Technique for Kidney Research Developed
To better understand how the treatment leads to kidney damage, and possibly prevent it, a team of researchers at Yale School of Medicine developed a new 3D-imaging technique to peer deep into these vital organs.
Thursday, August 27, 2015
New Type of Drug Can Target All Disease-causing Proteins
Current drugs block the actions of only about a quarter of known disease-causing proteins, but Yale University researchers have developed a technology capable of not just inhibiting, but destroying every protein it targets.
Monday, June 15, 2015
Single-Cell, 42-plexed Protein Analysis Achieved with a New Microchip Technology
A novel microdevice capable of detecting 42 unique immune effector proteins has been developed.
Tuesday, February 17, 2015
Scientific News
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Novel Technique for Kidney Research Developed
To better understand how the treatment leads to kidney damage, and possibly prevent it, a team of researchers at Yale School of Medicine developed a new 3D-imaging technique to peer deep into these vital organs.
Microscopic Fish are 3D-Printed to do More Than Swim
Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities.
Promising Class of New Cancer Drugs Cause Memory Loss in Mice
New findings from The Rockefeller University suggest that the original version of BET inhibitors causes molecular changes in mouse neurons, and can lead to memory loss in mice that receive it.
A Better Way to Personalize Bladder Cancer Treatments
Researchers at UC Davis, in collaboration with colleagues at Jackson Laboratory, have developed a new way to personalize treatments for aggressive bladder cancer.
Breath of Fresh Air for Asthmatics
Researchers hope to develop a platform that will allow a range of drugs to be delivered by inhalation.
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Elastic Patch Releases Drugs in a Stretch
Researchers from have developed a drug delivery technology that consists of an elastic patch that can be applied to the skin and will release drugs whenever the patch is stretched.
New Extra ‘Sticky’ Microgel Could Revolutionise Bladder Cancer Treatment
Researchers have designed a new super-efficient way of delivering an anti-cancer drug which could extend and improve the quality of life for bladder cancer patients - and perhaps save lives.
Liposomes: A Basis for Drugs of the Future
An international group of scientists have recently presented a review of liposomes, microscopic capsules widely used all over the world in the development of new drugs.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!