Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

4SC Reports Positive Data from Clinical Phase I trial with 4SC-205 in Cancer Patients

Published: Thursday, March 28, 2013
Last Updated: Wednesday, March 27, 2013
Bookmark and Share
All primary objectives of the clinical study achieved.

4SC AG has announced clinical data of the Phase I 'AEGIS' trial with the anti-cancer compound 4SC-205 in tumour patients. All primary study objectives were achieved. A comprehensive safety and tolerability profile of 4SC-205 was established.

As well as ascertaining the maximum tolerated dose (MTD) and dose limiting toxicities (DLTs), an excellent pharmacokinetic profile of the oral compound was established. In addition, the analysis of pharmacodynamic biomarkers demonstrated the intended mode of action.

The study data and new preclinical findings about the therapeutic target warrant further clinical evaluation of 4SC-205 in cancer patients. The Company, therefore, has decided on a study amendment, which will evaluate a new, adapted dosing scheme.

The first patient has now been treated according to the new scheme. 4SC-205 inhibits specifically the human kinesin spindle protein Eg5 which has been shown to play a crucial role in cell division (mitosis) and, therefore, in tumour growth.

To the Company's best knowledge, 4SC-205 is the only orally available Eg5 inhibitor in clinical development, worldwide.

Study design and positive results
The 'first-in-man', two-centre, dose-escalating Phase I study ('AEGIS' study) investigated safety, tolerability, pharmacokinetics, and pharmacodynamics of 4SC-205 in 46 patients with advanced solid tumours.

In two treatment cycles, each over three weeks, patients were treated with ascending oral doses of 4SC-205 in order to establish the MTD and potential DLTs.

Patients were treated in two different dose schedules: in the first dose schedule, patients received once-weekly dosing on days 1 and 8 of each cycle; in a second dose schedule patients received twice-weekly dosing on days 1, 4, 8 and 11 of each cycle.

In patients receiving once-weekly dosing, the MTD was established at the 150 mg dose level; in patients receiving a twice-weekly dosing, an MTD of 75 mg was established.

DLTs were reached at the treatment doses of 200 mg with once-weekly dosing and of 100 mg with twice-weekly dosing. Main side effects at DLT level were neutropenia and stomatitis of grade 3-4.

Moreover, 4SC-205 showed an excellent pharmacokinetic profile with a dose proportional increase of exposure and an elimination half-life of about 10 hours providing the basis for effective dosing schedules since the biological activity of the compound could be demonstrated via biomarker analysis of patients' skin biopsy samples.

Here, a dose dependent accumulation of cells arrested in cell division could be observed. Thus, 4SC-205 effectively exhibits the anticipated mode of action - inhibition of cell division (mitosis) - at clinically tolerated doses.

AEGIS study amendment
The clinical findings generated to date from this trial as well as new preclinical data about the therapeutic target and distribution of 4SC-205 in tissue, strongly support further clinical investigation of the compound applying an additional treatment schedule. The study has, therefore, been amended in order to investigate a new and innovative dosing scheme of 4SC-205 for the first time in cancer patients.

According to the amendment, another 9 to 12 eligible patients are expected to be enrolled in the trial. Following recent approval of the amendment by authorities, the first patient has now been treated. The results of the amended AEGIS study protocol are expected for mid 2013.

Dr Ulrich Dauer, Chief Executive Officer of 4SC, commented: 'We are pleased that in our AEGIS trial we have achieved all primary endpoints so far. 4SC-205 inhibits with high specificity an intriguingly interesting therapeutic target in anti-cancer treatment, the Eg5 protein, which plays a central role in cell mitosis and tumour growth. The encouraging biomarker response to 4SC-205 as shown in the study and new preclinical findings regarding the therapeutic target, make a strong case to further study our drug candidate in a new, highly innovative dosing scheme. This is expected to form a basis for the further evaluation of the compound in Phase II development. The fact that 4SC-205 is the only oral Eg5 inhibitor in clinical development is a strategic strength that facilitates the possibility to further explore alternative and enhanced dosing schemes.'


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

4SC Discovery Collaborates with Heidelberg University Hospital
The two-year R&D project is aimed at delivering a lead compound that can be brought to clinical development with the help of potential partners.
Friday, March 21, 2014
4SC Announces Positive Interim Results from Clinical Phase I/II SHORE Study
Phase II part of study planned to start soon in 2013.
Thursday, December 13, 2012
4SC to Present Biomarker Data for Cancer Drug Resminostat at EHA
Data from Phase II SAPHIRE trial in Hodgkin’s lymphoma presented at EHA meeting in Amsterdam.
Monday, June 18, 2012
4SC's Partner Yakult Honsha Starts Clinical Development with Cancer Compound Resminostat in Japan
The Phase I study will assess safety of resminostat in Japanese patients, which is a prerequisite of the drug's further late-stage clinical development in Japan.
Monday, May 21, 2012
4SC Announces Treatment of First Patient in Phase I TOPAS Study with the Selective HDAC Inhibitor 4SC-202
The study evaluate the safety, pharmacokinetics and clinical efficacy of 4SC-202 in patients with advanced hematological indications, including AML, ALL, CLL, MM, MDS and lymphomas.
Thursday, April 14, 2011
4SC Announces First Patient Dosed in Phase I/II SHORE Study with Resminostat
The first patient dosed in the study with resminostat as a second-line treatment for patients with advanced and metastatic colorectal KRAS-mutant cancer.
Friday, January 21, 2011
4SC Announces First-in-Man Phase I Results for 4SC-203
The company announces successful completion of Phase I study in healthy volunteers with the multi-target kinase inhibitor 4SC-203.
Sunday, January 09, 2011
4SC Announces Start of Dosing in First-in-Man Phase I Study with 4SC-203
This study investigates activity of 4SC-203 in 50 volunteers and comprises seven treatment cohorts.
Friday, January 22, 2010
4SC Announces Clinical Advancements in its Oncology Pipeline
The company, focused on autoimmune and cancer indications, initiates three new clinical trials for its oncology franchise.
Thursday, December 24, 2009
Scientific News
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Novel Technique for Kidney Research Developed
To better understand how the treatment leads to kidney damage, and possibly prevent it, a team of researchers at Yale School of Medicine developed a new 3D-imaging technique to peer deep into these vital organs.
Microscopic Fish are 3D-Printed to do More Than Swim
Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities.
Promising Class of New Cancer Drugs Cause Memory Loss in Mice
New findings from The Rockefeller University suggest that the original version of BET inhibitors causes molecular changes in mouse neurons, and can lead to memory loss in mice that receive it.
A Better Way to Personalize Bladder Cancer Treatments
Researchers at UC Davis, in collaboration with colleagues at Jackson Laboratory, have developed a new way to personalize treatments for aggressive bladder cancer.
Breath of Fresh Air for Asthmatics
Researchers hope to develop a platform that will allow a range of drugs to be delivered by inhalation.
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Elastic Patch Releases Drugs in a Stretch
Researchers from have developed a drug delivery technology that consists of an elastic patch that can be applied to the skin and will release drugs whenever the patch is stretched.
New Extra ‘Sticky’ Microgel Could Revolutionise Bladder Cancer Treatment
Researchers have designed a new super-efficient way of delivering an anti-cancer drug which could extend and improve the quality of life for bladder cancer patients - and perhaps save lives.
Liposomes: A Basis for Drugs of the Future
An international group of scientists have recently presented a review of liposomes, microscopic capsules widely used all over the world in the development of new drugs.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!