Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Molecular Modelling to Help Create Better, Safer Drugs

Published: Friday, May 24, 2013
Last Updated: Friday, May 24, 2013
Bookmark and Share
How our bodies break down the common drugs ibuprofen, diclofenac and warfarin is the subject of a new study from the University of Bristol.

The research should ultimately help predict how new drugs will be metabolized in the body, potentially helping avoid adverse drug reactions in future.

Professor Adrian Mulholland of the School of Chemistry and colleagues used molecular modelling to show in atomic detail how ibuprofen, diclofenac and warfarin are broken down by a group of enzymes called cytochrome P450s which play an important part in the metabolism of drugs.

Cytochrome P450s break down drugs by adding oxygen atoms to them, thus making them more soluble in water and easier to remove from the body.  It's important that drugs are broken down in this way so they don't accumulate to toxic levels.  However, it's also important that the drugs aren't broken down too quickly otherwise they won't stay in the body long enough to work.

Different people have different types of P450 which mean they break down drugs more quickly or more slowly.  Potentially harmful complications can also sometimes occur, for example, other drugs can 'block up' P450s thus interfering with the metabolism of a particular drug.  Other substances can also interfere with the process, for example grapefruit and grapefruit juice contain a molecule that 'inhibits' some cytochrome P450s, preventing them from breaking down  drugs.  This can cause the drug to build up to a toxic – and possibly lethal – level.

Professor Mulholland said: "An important aim in developing a safe, effective drug is understanding how it will be broken down in the body.  This process would be made quicker, cheaper and safer if we could predict reliably – for example, by using computers – how a candidate drug reacts in the body.

"This study uses molecular modelling methods which are able to describe chemical reactions in large and complex enzymes such as cytochrome P450s.  Our results agree well with experiments, and point to how modelling of this sort can help in developing predictions of drug metabolism."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Keeping Tumor Growth at Bay
Engineers at Washington University in St. Louis found a way to keep a cancerous tumor from growing by using nanoparticles of the main ingredient in common antacid tablets.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
Bile Acid Supports Production of Blood Stem Cells
A research group at Lund University has been able to show that bile acid is transferred from the mother to the foetus via the placenta to enable the foetus to produce blood stem cells.
Chemical Used to Replace BPA is Potentially Toxic
This study is the first to examine the effects of BPA and BPS on brain cells and genes that control the growth and function of organs involved in reproduction.
A Better Model for Parkinson's
Scientists at EPFL solve a longstanding problem with modeling Parkinson’s disease in animals. Using newfound insights, they improve both cell and animal models for the disease, which can propel research and drug development.
Improving Delivery of Poorly Soluble Drugs Using Nanoparticles
A technology that could forever change the delivery of drugs is undergoing evaluation by the Technology Evaluation Consortium™ (TEC). Developed by researchers at Northeastern University, the technology is capable of creating nanoparticle structures that could deliver drugs into the bloodstream orally – despite the fact that they are normally poorly soluble.
Toxicity Testing With Cultured Liver Cells
Microreactor replaces animal testing.
Neural Networks Adapt to the Presence of a Toxic HIV Protein
HIV-associated neurocognitive disorders (HAND) afflict approximately half of HIV infected patients.
Faster Drug Discovery?
Startup develops more cost-effective test for assessing how cells respond to chemicals.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!