Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Molecular Modelling to Help Create Better, Safer Drugs

Published: Friday, May 24, 2013
Last Updated: Friday, May 24, 2013
Bookmark and Share
How our bodies break down the common drugs ibuprofen, diclofenac and warfarin is the subject of a new study from the University of Bristol.

The research should ultimately help predict how new drugs will be metabolized in the body, potentially helping avoid adverse drug reactions in future.

Professor Adrian Mulholland of the School of Chemistry and colleagues used molecular modelling to show in atomic detail how ibuprofen, diclofenac and warfarin are broken down by a group of enzymes called cytochrome P450s which play an important part in the metabolism of drugs.

Cytochrome P450s break down drugs by adding oxygen atoms to them, thus making them more soluble in water and easier to remove from the body.  It's important that drugs are broken down in this way so they don't accumulate to toxic levels.  However, it's also important that the drugs aren't broken down too quickly otherwise they won't stay in the body long enough to work.

Different people have different types of P450 which mean they break down drugs more quickly or more slowly.  Potentially harmful complications can also sometimes occur, for example, other drugs can 'block up' P450s thus interfering with the metabolism of a particular drug.  Other substances can also interfere with the process, for example grapefruit and grapefruit juice contain a molecule that 'inhibits' some cytochrome P450s, preventing them from breaking down  drugs.  This can cause the drug to build up to a toxic – and possibly lethal – level.

Professor Mulholland said: "An important aim in developing a safe, effective drug is understanding how it will be broken down in the body.  This process would be made quicker, cheaper and safer if we could predict reliably – for example, by using computers – how a candidate drug reacts in the body.

"This study uses molecular modelling methods which are able to describe chemical reactions in large and complex enzymes such as cytochrome P450s.  Our results agree well with experiments, and point to how modelling of this sort can help in developing predictions of drug metabolism."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
New Material Opens Possibilities for Super-Long-Acting Pills
A pH-responsive polymer gel could create swallow able devices, including capsules for ultra-long drug delivery.
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
Zebrafish Reveal Drugs that may Improve Bone Marrow Transplant
Compounds boost stem cell engraftment; could allow more matches for patients with cancer and blood diseases.
Teeth Reveal Lifetime Exposures to Metals, Toxins
Researchers have identified dental biomarkers to reveal links between early iron exposure and late life brain diseases.
An Innovative Algorithm to Decipher How Drugs Work Inside the Body
Researchers at Columbia University Medical Center (CUMC) have developed a computer algorithm that is helping scientists see how drugs produce pharmacological effects inside the body.
Uncovering the Spread of Bacteria in Pneumonia
Northwestern Medicine scientists have discovered the role a toxin produced by a pneumonia-causing bacterium plays in the spread of infection from the lungs to the bloodstream in hospitalized patients.
Ferring Bets on Bacteriophages to Treat Inflammatory Bowel Disease
Ferring Pharmaceuticals have annoucned that it will collaborate with Intralytix in the latest phase of its early stage development programme for a bacteriophage-based therapy for inflammatory bowel disease (IBD).
Rare Form: Novel Structures Built from DNA Emerge
DNA, the molecular foundation of life, has new tricks up its sleeve. The four bases from which it is composed can be artificially manipulated to construct endlessly varied forms in two and three dimensions.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!