Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

IBN Creates Unlimited Source of Human Kidney Cells

Published: Monday, June 03, 2013
Last Updated: Monday, June 03, 2013
Bookmark and Share
Applications include in vitro toxicology, disease models & regenerative medicine.

Researchers at the Institute of Bioengineering and Nanotechnology (IBN) have successfully generated human kidney cells from human embryonic stem cells in vitro.

Specifically, they produced the renal cells under artificial conditions in the lab without using animals or organs. This has not been possible until now.

According to IBN Executive Director, Professor Jackie Y. Ying, "This discovery has wide-reaching implications for in vitro toxicology, drug screening, disease models and regenerative medicine. In particular, we are interested in applying our technology to develop predictive in vitro drug testing and renal toxicity models as alternatives to animal testing."

IBN Team Leader and Principal Research Scientist Dr Daniele Zink elaborated, "The kidney is a major target organ for drug-induced toxic effects. Therefore, it is important for pharmaceutical companies to find out early in the development phase whether their drugs would cause nephrotoxicity in humans. However, animal models are of limited predictability, and there is currently no regulatory accepted in vitro assay based on renal cells to predict nephrotoxic effects. A major problem is the lack of suitable renal cells, which may now be resolved through our discovery."

At present, human kidney cells are extracted directly from human kidney samples. However, this method is not efficient because such samples are limited, and the extracted cells die after a few cell divisions in the petri dish.

Also, cells obtained from different samples would display variable features, depending on age, gender, health status and other conditions of the donor.

Therefore, cells that have been isolated from human samples are of limited suitability for research and applications in industry and translational medicine, which require large cell numbers.

An alternative approach is to use human renal cell lines that have been rendered immortal, i.e. they can be reproduced indefinitely in the lab.

However, such cells may not be used in many applications due to safety issues, and their functional features have usually been changed so profoundly that they may no longer be useful toward predicting cell behavior in the human body.

IBN's technique, on the other hand, enables human embryonic stem cells to differentiate into renal proximal tubular-like cells. This particular kidney cell type plays an important role in kidney disease-related processes and drug clearance.

Results showed that the renal proximal tubular-like cells generated by IBN were similar to the renal proximal tubular cells isolated from fresh human kidney samples. For example, they displayed very similar gene and protein expression patterns.

Also, since human embryonic stem cells may grow indefinitely in cell culture, the IBN researchers have discovered a potentially unlimited source of human kidney cells.

"We are currently adapting our approach to use induced pluripotent stem cells as the source," shared Dr Karthikeyan Narayanan, IBN Senior Research Scientist. "We are also planning to modify our protocol in order to generate other renal cell types from stem cells."

The IBN researchers have tested the renal cells they generated in in vitro nephrotoxicology models developed by the Institute, and have obtained very promising test results. They welcome industry partners to collaborate with IBN on commercializing this technology.

IBN has recently received a grant from A*STAR's Joint Council Office Development Program to further develop predictive in vitro models for liver- and kidney-specific toxicity.

This project will be conducted in collaboration with the Experimental Therapeutics Centre, the Bioinformatics Institute and the National University Health System.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Gut Microbes Signal to the Brain When They're Full
Don't have room for dessert? The bacteria in your gut may be telling you something.
Personalized Drug Screening for Multiple Myeloma Patients
A personalized method for testing the effectiveness of drugs that treat multiple myeloma may predict quickly and more accurately the best treatments for individual patients with the bone marrow cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
Batten Disease may Benefit from Gene Therapy
NIH-funded animal study suggests one-shot approach to injecting genes.
Shedding Light on “Dark” Cellular Receptors
UNC and UCSF labs create a new research tool to find homes for two orphan cell-surface receptors, a crucial step toward finding better therapeutics and causes of drug side effects.
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos