Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Study Leads to Alzheimer's Breakthrough

Published: Thursday, October 10, 2013
Last Updated: Thursday, October 10, 2013
Bookmark and Share
Researchers at the Medical Research Council Toxicology Unit have used an orally-administered compound to block a major pathway leading to brain cell death in mice, preventing neurodegeneration.

The team had found previously that the build up of misfolded proteins in the brains of mice with prion disease over-activates a natural defence mechanism in cells, which switches off the production of new proteins. This mechanism would normally switch back ‘on’ again, but in these mice the continued build-up of misshapen protein keeps the switch turned ‘off’. This is the trigger point leading to brain cell death, as the key proteins essential for nerve cell survival stop being made. 

Originally, the team injected a protein that blocked the ‘off’ switch of the pathway into a small region of the brain, and by doing this were able to restore protein production, and halt the neurodegeneration. The brain cells were protected, and protein levels and synaptic transmission (the way in which brain cells signal to each other) were restored allowing the mice to live longer. This led the scientists to predict that compounds able to block this pathway would also protect brain cells.

In the new study, published in Science Translational Medicine, the researchers gave by mouth a drug-like compound against the pathway to prion infected mice, hoping to block the off-switch in the same way.  The compound, which had originally been developed by GlaxoSmithKline for a different purpose, was able to enter the brain from the bloodstream and halt the disease, throughout the whole brain. However, this compound, despite protecting the brain, also produced weight loss in the mice and mild diabetes, due to damage to the pancreas.*

The researchers studied mice with prion disease because these mouse models currently provide the best animal representation of human neurodegenerative disorders in which the build up of misshapen proteins is linked with brain cell death.  These include Alzheimer’s and Parkinson’s as well as prion diseases.  Another paper in Nature Neuroscience last month highlighted this pathway as a potential therapeutic target in treating Alzheimer’s.

Professor Giovanna Mallucci, who led the team, said, “Our previous study predicted that this pathway could be a target for treatment to protect brain cells in neurodegenerative disease.  So we administered a compound that blocks it to mice with prion disease. We were extremely excited when we saw the treatment stop the disease in its tracks and protect brain cells, restoring some normal behaviours and preventing memory loss in the mice.

“We’re still a long way from a usable drug for humans – this compound had serious side effects. But the fact that we have established that this pathway can be manipulated to protect against brain cell loss first with genetic tools and now with a compound, means that developing drug treatments targeting this pathway for prion and other neurodegenerative diseases is now a real possibility.”

Professor Hugh Perry, chair of the Medical Research Council's Neuroscience and Mental Health Board, said, “Misshapen proteins in prion diseases and other human neurodegenerative disorders, such as Alzheimer’s and Parkinson’s, also over-activate this fundamental pathway controlling protein synthesis in the brains of patients. Despite the toxicity of the compound used, this study indicates that, in mice at least, we now have proof-of-principle of a therapeutic pathway that can be targeted. This might eventually aid the development of drugs to treat people suffering from dementias and other devastating neurodegenerative diseases.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A Fundamental Protection Mechanism Against Formalin In Mammals is Revealed
Formaldehyde, or formalin, is well known to all of us as a common chemical used in many industrial processes and also as a preservative, remarkably we also produce formaldehyde in our bodies.
Wednesday, September 30, 2015
AstraZeneca, MRC Collaboration to Create New Centre for Early Drug Discovery
The Companies today announced the groundbreaking collaboration aimed at better understanding the mechanisms of human disease. The collaboration will see the creation of a joint research facility at AstraZeneca’s new R&D centre in Cambridge in the UK.
Monday, March 31, 2014
A Declaration of Openness in Using Animals in Research
The MRC and other members of the research sector have signed a declaration on transparency in animal research.
Monday, October 22, 2012
Brain Chemical Finding could Open Door to new Schizophrenia Drugs
New research has linked psychosis with an abnormal relationship between two signalling chemicals in the brain.
Friday, October 01, 2010
Medical Research Council Technology and Pharmidex Announce Drug Discovery Collaboration
Pharmidex to provide all in vivo ADME/PK drug discovery support to the MRCT in 2010.
Thursday, April 15, 2010
Health Protection Agency Launches new Research Centre for Studying Nanotoxicology
The Agency is collaborating with universities and the MRC Toxicology Unit to study the possible health effects of human exposure to nanoparticles.
Friday, July 25, 2008
Scientific News
Oxygen Can Impair Cancer Immunotherapy
Researchers have identified a mechanism within the lungs where anticancer immune resposnse is inhibited.
Symmetry is Key to Collagen
Researchers describe how symmetry may be the key to growing collagen fibres outside the body.
Biological Barcodes Using CRISPR
Using genome editing tools, researchers are getting closer to understand differentiation of various cell types during development.
Decades Old Chemicals Linked to Current Increased Autism Risk
The chemcials - organochlorines - were banned in the US in 1977 but their side effects are still being seen.
Gene Therapy Via Ultrasound
Research into a gene therapy approach called sonoporation could help combat heart disease and cancer.
The Fight Against Fungal Infections
A pioneering university research team has recently employed such a system within their laboratory to obtain a greater understanding of the dynamics and progression of C. albicans in vivo using a mouse model.
Fly Study into Therapies for HVP-Induced Cancer
Fruit flies may help scientists understand the mechanism by which HPV can cause cancer as well as identify potential drug treatments.
Exploring Ebola-Malaria Link
Data shows people infected with Ebola were more likely to survive if co-infected with malarial parasite.
Precision Nanobots Target Cancerous Tumours
Researchers achieve breakthrough toward redefining anti-cancer drug administration using nanorobotics.
Characterizing the Mouse Gut Microbiome
Study establishes the first public collection of bacteria from the intestine of mice.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!