Corporate Banner
Satellite Banner
ADME Tox
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Powerful Anti-Cancer Compound Safely Delivered

Published: Tuesday, October 22, 2013
Last Updated: Tuesday, October 22, 2013
Bookmark and Share
Researchers have discovered a way to effectively deliver staurosporine (STS).

STS is a powerful anti-cancer compound that has vexed researchers for more than 30 years due to its instability in the blood and toxic nature in both healthy and cancerous cells.

For the first time, the new method safely delivered STS to mouse tumors, suppressing them with no apparent side effects. The results were published online, Oct. 20, in the International Journal of Nanomedicine.

"By itself, staurosporine shows potent activity against a number of cancer cell lines, including chemotherapy-resistant tumors. However, it also harms normal tissue," said senior author Dr. Santosh Kesari, director of neuro-oncology at UC San Diego Moores Cancer Center. "With this study, we have been able to overcome the pharmacokinetic barriers to delivering staurosporine to tumors with the use of liposomes."

STS was originally isolated from the bacterium Streptomyces staurosporeus in 1977. The compound prompts a wide variety of cancer cell types to self-destruct, a process called apoptosis or programmed cell death. In its free form, STS is quickly metabolized and harmful to healthy cells. By trapping STS in tiny spheres called liposomes, Moores Cancer Center researchers have been able to effectively deliver the compound, past healthy tissue, to the tumor, with potent results.

Liposomes are microscopic bubbles made from the same molecules as cell membranes. Researchers use these hollow spheres to deliver therapeutic agents. Anti-cancer drugs can be loaded inside, while disguising agents coat the external membrane surface to hide the cancer-killer from the immune system.

"Staurosporine is able to drive virtually any mammal cell into apoptosis. It is able to uniquely interfere with several cell signaling pathways, even in cancer cell lines that defy frontline chemotherapy agents," said Milan Makale, a project scientist at UC San Diego Moores Cancer Center. "In the case of treatment-resistant brain, colon or pancreatic cancers, the potency of staurosporine stacks the odds in our favor of improving current treatments and outcomes. With an appropriately engineered liposomal delivery system, we can finally keep the drug in the blood longer, get it into the tumor better, and to a significant degree, spare healthy tissue."

In addition to encapsulating STS in a liposomal delivery system, the researchers developed a technique to increase the efficiency of drug-loading to more than 70 percent, the highest reported for a STS compound.

Drug-loading is the ratio of drug encapsulated by the liposome to the total amount of drug introduced into solution containing liposomes. The boosted loading was achieved by manipulating the pH environment of the cells with a proprietary method developed at Moores Cancer Center to force more STS into the liposomes. This platform technology is currently in the process of being licensed to a biotech company to develop it further for human use.

The effects of the delivery approach were validated with the use of fluorescence to track the STS penetration. The absence of weight loss in the mice confirmed the reduced toxicity.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Designing New Pain Relief Drugs
Researchers have identified the molecular interactions that allow capsaicin to activate the body’s primary receptor for sensing heat and pain, paving the way for the design of more selective and effective drugs to relieve pain.
Thursday, June 11, 2015
FDA, UCSF Partnership Helps Industry Identify Drug Interactions
Goal is to find risks before drugs reach patients.
Wednesday, September 05, 2012
Computer Model Successfully Predicts Drug Side Effects
Research based on the similarity between a drugs chemical structures and those molecules known to cause side effects, according to a paper appearing online this week in the journal Nature.
Tuesday, June 12, 2012
UCLA Researcher Developing Lab to Help Manufacturer Testing
UCLA team has developed a testing method to assess the safety and health risks of engineered nanomaterials.
Wednesday, February 08, 2006
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
Zebrafish Reveal Drugs that may Improve Bone Marrow Transplant
Compounds boost stem cell engraftment; could allow more matches for patients with cancer and blood diseases.
Teeth Reveal Lifetime Exposures to Metals, Toxins
Researchers have identified dental biomarkers to reveal links between early iron exposure and late life brain diseases.
An Innovative Algorithm to Decipher How Drugs Work Inside the Body
Researchers at Columbia University Medical Center (CUMC) have developed a computer algorithm that is helping scientists see how drugs produce pharmacological effects inside the body.
Uncovering the Spread of Bacteria in Pneumonia
Northwestern Medicine scientists have discovered the role a toxin produced by a pneumonia-causing bacterium plays in the spread of infection from the lungs to the bloodstream in hospitalized patients.
Ferring Bets on Bacteriophages to Treat Inflammatory Bowel Disease
Ferring Pharmaceuticals have annoucned that it will collaborate with Intralytix in the latest phase of its early stage development programme for a bacteriophage-based therapy for inflammatory bowel disease (IBD).
Rare Form: Novel Structures Built from DNA Emerge
DNA, the molecular foundation of life, has new tricks up its sleeve. The four bases from which it is composed can be artificially manipulated to construct endlessly varied forms in two and three dimensions.
Early Lead Exposure Has Long Lasting Effect
A team of researchers have found links between lead exposure in children and epigenetic alterations in regulatory regions of genes that are imprinted and known to be critical in growth regulation and brain development.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!